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Abstract 
Graphic Statics provides a collection of procedures for the design and analysis of two-dimensional 
structural systems, involving only geometric operations on two-dimensional form and force diagrams. 
Unfortunately, the applicability of Graphic Statics to three-dimensional problems is limited. Only 
three-dimensional problems that can be replaced by an equivalent series of two-dimensional problems, 
can be addressed.  
It has been shown how the equilibrium of three-dimensional systems of forces can be described using 
polyhedral form and force diagrams [1, 2, 7]. However, procedures for solving specific design and 
analysis problems with these polyhedral diagrams have not yet been developed. 
One of the fundamental procedures in traditional (2D) Graphic Statics is to establish global 
equilibrium for given boundary conditions, and to use this information to construct different funicular 
solutions for the specified loads and supports. Therefore, in this paper, as a first step in the 
development of truly 3D Graphic Statics, we describe an equivalent procedure for given, three-
dimensional boundary conditions. The procedure involves only geometric operations on polyhedral 
form and force diagrams.  
The method, as it is presented here, is only applicable to statically determined systems of forces in 
which the applied loads do not generate a resultant couple. We give an overview of the well known 
procedure in 2D Graphic Statics to identify its key concepts and constructive elements, and describe 
the different steps of the three-dimensional version in detail. 
 
Keywords: 3D graphic statics, reciprocal form and force polyhedrons, global force polyhedron, 
funicular polyhedron, 2D graphic statics, global force polygon, funicular polygon. 
 

1. Introduction 
Graphic Statics could be defined as a collection of procedures involving only geometric construction 
techniques (applied to so-called form and force diagrams) for design and analysis of two-dimensional 
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structures. The applicability of these procedures to three-dimensional problems is limited to those 
problems that can be simplified to an equivalent series of interrelated two-dimensional problems. 
In “The Principle of Equilibrium of Polyhedral Frames”, Rankine [7] proposed how the equilibrium of 
a spatial system of forces, applied to a single point in space, could be described using a closed 
polyhedron. Based on Rankine’s proposition, Akbarzadeh et al. [1, 2] visualized and clarified the 
reciprocal relationship between polyhedral form and force diagrams and demonstrated their potential 
for the design of complex spatial structures. For example, they showed how the aggregation of convex 
polyhedral force cells could be used to specifically generate complex spatial systems of forces in 
compression-only (or tension-only) equilibrium (Akbarzadeh et al. [1 2]). However, as the described 
procedures did not allow for the generation of specific solutions for given boundary conditions, such 
as specific support locations and/or specific applied loads, their applicability in actual design 
situations remains limited. Therefore, it is clear that to go beyond open-ended explorations of three-
dimensional force equilibrium, and develop an actual three-dimensional version of Graphic Statics, 
procedures should be established through which specific structural problems involving spatial systems 
of forces can be addressed in a rigorous and intuitive manner, similar to the way in which specific 
two-dimensional problems can be addressed with the specific procedures offered by traditional (2D) 
Graphic Statics. 
 
In this paper we describe a method for exploring global equilibrium of different funicular solutions for 
given three-dimensional boundary conditions, such as the spatial configuration of loads and supports, 
based only on geometric operations involving form and force polyhedrons. Note that the presented 
procedure is only valid if the applied loads do not generate a resultant couple, i.e. if they can be 
replaced by a resultant force alone. The procedure is furthermore only applicable to (externally) 
statically determined structures.  
 
In Section 2, we give an overview of the corresponding procedure in 2D Graphic Statics, to identify 
the key steps and constructive elements for which we should provide a three-dimensional equivalent. 
This includes 1) determining the magnitude, direction and location of the resultant force, 2) 
establishing the requirements for global equilibrium for given boundary conditions, and 3) 
constructing funicular solutions for specified support locations. In Section 3, we give a detailed 
description of the 3D method. 
 

2. 2D Graphic Statics 
The 2D Graphic Statics procedure for constructing funicular solutions for given boundary conditions, 
i.e. given loads and support locations, is well known and well documented (Allen and Zalewski [3], 
Bow [4], Cremona [5], Ritter [8] and Wolfe [9]). Therefore, we only give a brief overview here, to 
identify the key aspects and constructive elements for which we will provide three-dimensional 
equivalents in Section 3. 
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2.1. Resultant force 
Figure 1a shows how the magnitude and direction of the resultant force of the given loads are found 
by constructing a load line, and how the location of the line of action of the resultant force in relation 
to the applied loads is determined using a trial construction. The trial construction involves a 
decomposition of the forces in the load line using an arbitrary trial pole, Ptrial, and the construction of a 
corresponding trial funicular in the form diagram. See Wolfe [9] for a detailed explanation of this 
procedure.  
Figure 1b depicts an alternative procedure for finding the location of the line of action of the resultant 
force. This procedure has a direct three-dimensional equivalent, as we will see in Section 3. The 
procedure consists of the following steps. First, we construct a line perpendicular to the line of action 
of the resultant force in the load line. We will call this the equilibrium line. Then, we intersect each of 
the lines of action of the loads with the equilibrium line, and decompose the loads at these intersection 
points into two components, one parallel to the equilibrium line and one perpendicular. Note that the 
perpendicular components are thus parallel to the resultant force. The intersection of the line of action 
of the resultant and the equilibrium line is the centroid of the intersection points of the applied loads, 
weighted by their perpendicular components. Figure 1b shows the geometric construction of this 
weighted centroid. The construction is basically the repeated application of a graphical method for 
finding the resultant of two parallel forces, described in detail in Wolfe [9]. 

 
   (a)            (b) 

 
Figure 1: a) The location of the line of action of the resultant can be determined using the well-known 

trial construction. b) An alternative approach is the construction of the weighted centroid of the 
intersections of the lines of action of the applied loads with a line perpendicular to the line of action of 

the resultant in the load line. The intersections are weighted by the magnitude of the perpendicular 
components of the loads with respect to this line. 
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2.2. Global equilibrium 
Having determined the location of the line of action of the resultant force, we can use a trial 
construction to determine the requirements for global equilibrium for the given boundary conditions. 
Essential to this is the trial closing string (Allen and Zalewski [3] and Wolfe [9]). 
Figure 2a depicts this trial construction. It is the result of the following steps. First, we draw lines 
through the support locations A and B, parallel to the line of action of the resultant force. As before, 
we choose an arbitrary pole in the force diagram, Ptrial, to decompose the resultant force. Then, from 
an arbitrary point Atrial on the line through A, we construct a line parallel to 1-Ptrial. This line intersects 
the line of action of the resultant force in Rtrial. From Rtrial we then construct a line parallel to 2-Ptrial, 
which intersects the line through B in Btrial. The trial closing string is the line connecting points Atrial 
and Btrial.  
The line through the trial pole, parallel to Atrial-Btrial, intersects the resultant force in the load line at 
point X. This point divides the resultant force into two components, a and b (see Figure 2a). These 
components, when applied anywhere on the lines through A and B, create force and moment 
equilibrium for the given loads. In Figure 2a, we have applied the resultant force and the two reaction 
components at points on the equilibrium line. Note that equilibrium could be verified using the 
geometric procedure for finding the resultant of two parallel forces. 

 
   (a)            (b) 

 
Figure 2: a) The trial closing string can be used to determine the conditions for equilibrium for the 
given boundary conditions. b) Based on this, all funicular solutions through the prescribed support 

locations can be constructed. 
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2.3. Funicular solutions 
Figure 2b shows how the information about global equilibrium for the given boundary conditions, 
represented by point X, can be used to generate infinitely many funicular solutions through the 
specified support locations.  
First, we construct a new closing string connecting the prescribed supports A and B, and a line parallel 
to this closing string through X. Any pole on this line, generates a different funicular solution for the 
given boundary conditions. Figure 2b depicts three poles, P1, P2 and P3, with three corresponding 
funicular solutions, R1, R2 and R3. 

3. 3D Graphic Statics 
In this section, we describe a geometric procedure for generating funicular solutions for given 
boundary conditions involving spatial configurations of applied loads and supports. As in the two-
dimensional case, the procedure consists of three main steps: 1) determine the magnitude, direction 
and location of the resultant force (and couple), 2) determine the requirements for global equilibrium 
for the given boundary conditions, and 3) construct funicular solutions through the specified supports.  
Unlike in two dimensions, a three-dimensional system of forces cannot always be replaced by a 
resultant force alone. In some cases, a resultant couple is produced as well. The second and third step 
of the presented procedure are only valid if the loads do not have a resultant couple. The procedure is 
furthermore only valid for statically determined systems. 

3.1. Resultant force and couple 
Consider the spatial configuration of forces depicted in Figure 3. As in the two-dimensional case, we 
find the magnitude and direction of the resultant force by constructing a load line. Then, we use a 
similar procedure to the alternative procedure described in Section 2.2 in relation to Figure 1b, to 
determine the location of the line of action of the resultant.  
First, we construct a plane perpendicular to the line of action of the resultant force. This is the 
equilibrium plane, which is the three-dimensional equivalent of the equilibrium line introduced in 
Section 2.1. Then, we find the intersection points of the lines of action of the loads with the 
equilibrium plane, and decompose the loads at these intersection points into an in-plane and a normal 
component. Note that the normal components are parallel to the resultant force. As in Section 2.2, the 
intersection of the line of action of the resultant force with the equilibrium plane is the centroid of the 
intersections of the loads with the resultant plane, weighted by the magnitude of their normal 
components.  
The resultant force of the in-plane components is zero. However, depending on the configuration of 
the loads, the in-plane components can produce a resultant couple around an axis normal to the 
equilibrium plane (Figure 3b). The geometric construction method presented in this paper is only valid 
for configurations of loads that do not generate a resultant couple, and can thus be replaced by a 
resultant force alone (Figure 3a). This is, for example, always the case if the loads are concurrent, i.e. 
if their lines of action intersect at a single point in space. It is also the case if the loads are parallel. 
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   (a)            (b) 

 
Figure 3: The magnitude and direction of the resultant force of a spatial system of forces can be found 

by constructing a load line. The location of the line of action of the resultant force is the centroid of 
the weighted intersection points of the lines of action of the loads with the equilibrium plane. The 

weights on the intersection points are the magnitudes of the components of the loads perpendicular to 
the equilibrium plane. a) The forces do not produce a resultant couple. Therefore, they can be replaced 

by a resultant force alone. b) The forces produce a resultant force and a resultant couple. 

 
 

Figure 4: In the force polyhedron, the resultant face is a triangle if the structural system is (externally) 
statically determined. The area of the triangle is equal/proportional to the magnitude of the resultant 

force, and its sides perpendicular to the lines of action of the reaction forces. 
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3.2. Global equilibrium 
The next step is to use a trial construction to establish the requirements for global equilibrium for the 
given boundary conditions. First, we construct a trial force polyhedron. The global force polyhedron 
of a statically determined system of forces is a tetrahedron. Therefore, the face corresponding to the 
resultant force is a triangle, perpendicular to the line of action of the resultant force. The area of the 
triangle is equal (or proportionate) to the magnitude of the resultant force. The sides of the triangle are 
perpendicular to the lines of action of the corresponding reaction forces. If the applied loads have no 
resultant couple, the lines of action of the applied loads intersect in a point on the line of action of the 
resultant force. Using a trial pole, we then complete the trial force polyhedron by connecting the pole 
to the resultant face. The construction of the resultant face and the trial force polyhedron are depicted 
in Figure 4. 
In the form diagram, we then construct the trial funicular as follows. First, we draw lines through the 
prescribed support locations, A, B and C, parallel to the line of action of the resultant. From an 
arbitrary point Atrial on the line through A we construct a line perpendicular to the corresponding face 
in the force polyhedron. This line intersects the line of action of the resultant force at point Rtrial 
(Figure 5). From Rtrial, we construct lines perpendicular to the other two reaction faces of the trial 
force polyhedron to find intersections Btrial and Ctrial (Figure 5) on the lines through the other two 
support locations. 
The plane defined by the points Atrial, Btrial and Ctrial is the three-dimensional equivalent of the trial 
closing string in 2D. Drawing a line perpendicular to this plane, through the trial pole in the force 
polyhedron, we find point X (Figure 5). As in the two-dimensional construction, this point divides the 
resultant face into three components, and thereby defines the required distribution of reaction forces 
along the lines parallel to the line of action of the resultant through the support locations to establish 
global equilibrium for the given boundary conditions. 

 
Figure 5: A line through the trial pole, perpendicular to the closing plane of the trial construction, 

intersects the resultant face in X.  
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3.3. Funicular solutions 
Having determined the location of X, we can now easily construct funicular solutions for the specified 
support locations. First, we construct a closing plane through A, B and C, and a line perpendicular to 
this plane, through X (Figure 6). As in the two-dimensional case, any pole point on this line, forming a 
closed force polyhedron together with the resultant face, represents a funicular solution for the given 
boundary conditions. Several solutions, sharing the same supports, are depicted in Figure 6.  

 
Figure 6: Every pole on a line through X, perpendicular to the closing plane of the specified supports 

(A, B, C), defines a different funicular solution for the given boundary conditions. 

 

Conclusion 
In this paper, we have presented a purely geometric method for exploring global equilibrium of 
different funicular solutions for given three-dimensional boundary conditions, using polyhedral form 
and force diagrams. The method is the three-dimensional version of the equivalent, well known 
procedure of traditional (2D) Graphic Statics.  
The method, as it is presented here, can only be applied to statically determined systems of forces with 
applied loads that do not produce a resultant couple. In other words, the method can only be used if 
the applied loads can be replaced by a resultant force alone.  
Future work should focus on extending this method to general systems of forces (including systems of 
which the applied loads generate a resultant couple), and on the development of procedures for 
translating the obtained results for global equilibrium to internal force distributions. 
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