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Abstract 
This paper presents a method for the manipulation of groups of polyhedral cells that allows geometric 
transformation while preserving the planarity constraints of the cells and maintaining the equilibrium 
direction of the edges for the reciprocity of the form and force diagrams. The paper expands on 
previously investigated single-cell manipulations and considers the effects of these transformations in 
adjacent cells and the whole system. All the transformations discussed in this paper maintain the initial 
topology of the input system. The result of this research can be applied to both form and force diagrams 
to investigate various geometric transformations resulting in convex or complex (self-intersecting) 
polyhedra as a group. The product of this research allows intuitive user interaction in working with form 
and force diagrams in the early stages of geometric structural design in 3D.  
Keywords: 3d Graphic Statics, Polyhedron, Manipulation, Form, Force, 3DGS 

1. Introduction  
3D Graphic Statics (3DGS) based on reciprocal polyhedral diagrams is one of the promising structural 
design methods that has recently been introduced and is currently being developed by multiple 
researchers around the world (Akbarzadeh [1,2,3], Konstantatou [6] McRobie [9] ). This method relies 
on polyhedral systems to describe equilibrium of complex force configurations in three dimensions. 
Modeling and manipulating polyhedral geometry in the context of 3D Graphic Statics and reciprocal 
polyhedral diagrams, either as the form or force diagram, are not a trivial tasks. The construction of 
dual-reciprocal convex polyhedral diagrams was addressed in [1]. However, the research was limited to 
convex cells and did not provide much insight into polyhedral manipulation. Although polyhedral 
reconstruction is a well-researched topic with results covering multiple field applications (Demaine and 
O’Rourke [4], Ikeuchi [5], Moni [10]) most previous research has addressed single cell systems. 
Recently Lee at al [7], have shown a method for constructing single polyhedra based on face normal 
directions and target face areas. Previously, the same researchers, in [8] presented a workflow for 
modifying multiple polyhedrons as a 3DGS force diagram but without conserving the reciprocal 
relationship with the form diagram.  To the extent of our knowledge no method for manipulating groups 
of polyhedrons with constant normal direction for the faces has been proposed prior to the writing of 
this paper.  

1.1. Problem statement 
The reciprocal relationship between a polyhedral system and its dual in 3DGS, is the equivalent of an 
equilibrium of forces (represented by the first system) inside a structural form (represented by the dual). 
This equilibrium is comprised of two components, a topological and a geometrical one. The topological 
component ensures a one to one pairing between the number of forces and the elements of the form. The 
geometry component further refines the relationship by enforcing perpendicularity between primal 
(force) faces and dual (form) edges according to the conventions proposed by Rankine [11]. The 
topological component of the relationship, although not trivial, is relatively straight-forward to establish. 
The geometric component can be addressed second and is usually more complicated to establish and 
much more prone to breaking in the event of unconstrained change occurring in any of the polyhedral 
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structures. The process of establishing the geometrical link of the reciprocal relationship usually requires 
iteration over the topology [1] or the calculation of a stress function as a higher dimension polytope [6].   

Often, the methods used to establish the reciprocal relation prohibit further exploration and constraint 
based transformation of the resultant form. A transformation based on a full reconstruction of the system 
can be attempted. But depending on the speed of the process and the complexity of the data, the 
manipulation can be a very cumbersome and often impossible task especially if it needs to be repeated 
multiple times.  By examining the geometry rules that make these reciprocal constructs possible, it is 
obvious that they are not simply singular events, but instances of a solution space. This means that if the 
geometry rules are respected and enforced, a process for the exploration of a solution space for a 
polyhedral system, locked into a reciprocal relationship with its dual, can be created.  

1.2.  Objectives 
The present research aims to establish a workflow that would allow for the manipulation of a polyhedral 
system, in a state of static equilibrium, without breaking the reciprocal relationship with its dual, and 
while keeping all of the faces of the cells planar. Moreover, the method emphasizes on preserving the 
convexity of the cells during and after the transformation. See Fig.1 for an example. 

2.  Theoretical framework.  
The start of the transformation can be one, or a set of vertices in the group of polyhedral cells. Any input 
for the manipulation of the polyhedral group can be viewed as a translation of a set of vertices. In Fig. 
1, the offset of faces f(0,1,2,3,4,5), f(0,1,10,9,8,7) and f(0,7,6,5) is the result of the translation of vertex v0 to position 
v0’. Any vertex or set of vertices from these faces can be considered an input for the transformation 
process. The transformation works on a graph representation of the polyhedral group. In the graph 
representation of the polyhedral group, the nodes of the graph are the vertices of the polyhedrons and 
the edges of the graph are the edges of the polyhedrons. Creating the sequence of geometrical 
transformations in the polyhedral system is equivalent to converting the graph into a tree graph. We 
consider the root of the tree graph, the first moved vertex in the polyhedral cluster. The input vertices 
are moved to the new locations and from them the transformation is followed from vertex to vertex via 
the edges until all vertices in the tree have been parsed. We call this tree graph a transformation path. 
For each complete transformation of a polyhedral group, based on the same input of moved vertices, the 
transformation paths are not unique. Each path produces a unique transformation result for a given set 
of inputs. A single vertex transformation (the root) is enough to start the path. Any other input vertices 
will have to be in positions compatible with the transformation path for the transformation to succeed. 
The transformation process works in steps starting from the root and expands outwards, calculating each 
new transformed vertex based on its connections in the tree of transformations and in the original 
polyhedral cluster graph.  

Figure 1. Transformation of a simple polyhedral form. 

(a) (b) (c) 
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2.1. Transformation propagation 
This concept ensures that at every step, the transformation is propagated. It uses the connectivity of the 
original polyhedron topology to extend the transformation from the translated vertex, to all the edges 
that connect to it and from there, to all the faces that contain those edges. By attempting to fully 
determine those edges, new vertices are translated and thus the transformation propagates further. 

2.1.1. Vertices registering edges and faces 
Every moved vertex (if parallelism is preserved) causes a number of edges to be reconstructed as a 
direction in space anchored to the moved vertex point. Those edges, even though not fully reconstructed, 
in turn, trigger the reconstruction of all the faces that contain them. In Fig. 2.c, a vertex is moved from 
point p0 to p0’. As a result, all original edges passing through vertex v0 namely e(0,1), e(0,2) and e(0,4), are 
partially reconstructed as parallel directions anchored to p0’. For the purpose of this discussion we will 
use the notations for the transformed edges as e(0’,1’), e(0’,2’)  e(0’,4’) event though points p1’ p2’ and p4’ have 
not yet been determined, and some of them might end up in a different position than the one presented 
here when the full transformation of the polyhedron group is completed. What is important in our case 
is the direction of the edge in space and its anchoring position, point p0’. We will call these partially-
reconstructed, transformed edges, partial edges. In a similar fashion, all faces containing the edges 
mentioned above will be named using the points that uniquely identify them both in their original and 
their transformed state. Two partial edges sharing a point define the partial face as f(1’,0’,2’) or f(2’0’,4’).  

2.1.2. Closing the transformation loop 
All those partial elements need to be fully determined moving forward, so the immediate goal is to find 
the position for the vertices at the other end of the partial edges. Therefore, any determined vertex has 
two main roles: a) to complete multiple partial edges and add to multiple partial faces that eventually 
get completed too, and b) to generate a new set of partial edges and faces that ensure the transformation 
loop continues until all the elements of the polyhedral group are parsed. 

2.2. Transformation prioritization 
The second concept deals with controlling the perpetuation of a change inside the polyhedral cluster for 
the scope of maintaining a coherent transformation path. A coherent transformation path is a tree on the 
polyhedral group graph that is bound by a set of priority rules. These rules ensure that a fully transformed 
edge will stay parallel to its original direction, even though its vertices are calculated in different 
branches of the path at very different steps of the transformation. Transformation prioritization is also 
necessary to obtain additional geometric information for the calculation of some vertices. For this, some 
elements must wait in a queue until additional transformed geometry becomes available for the 
calculation. All transformed vertex calculations are achieved through intersections. Transformation 
prioritization works by examining all available intersections at any given step of the process and sorting 
them in three main categories to determine the order they will be worked in.  

2.2.1. Intersection types and priority 
All intersections are either between two coplanar partial edges, or between a partial edge (edge direction) 
and an original face-plane. We call these coplanar line intersections, in-face intersections and the line-
plane intersections, out-of-face intersections. For the purpose of prioritizing, we also need to distinguish 
between two subtypes of in-face intersections. First, we have intersections between two partial edges in 
the same face. We call those active intersections because both edges actively seek to pinpoint their other 
vertex location. Second, we have intersections between one partial or active edge and one original 
untransformed edge. We name those passive intersections. In order to keep the transformation process 
coherent, the active intersections must be completed first, passive intersections second and out-of-face 
intersections third. 

An active intersection example is shown in Fig. 2.a. The transformation of two vertices v0 and v1 in the 
same face, triggers the creation of two coplanar partial faces e(0’,2’) and e(1’2’) that connect to the same 
topological yet undetermined vertex v2’. If they would not be recognized as active both edges could be 
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completed through individual intersections with e(1,2) and e(0,2) respectively. This would create and 
ambiguous determination for v2’ with two transformed positions.  

Figure 2.b shows multiple typical passive in-face intersections. Starting from transformed v0’ the position 
for v1’ and v4’ are determined by intersecting partial edges with coplanar original edges. One step further 
v3’ and v5’ are determined in the same way. It should be noted that passive intersections have medium 
priority and can be pursued only if there are no active intersections available.    

Out-of-face intersections are exemplified in Fig. 2.c. This type of intersection can be instantiated by a 
transformed vertex moved outside of all original faces topologically connected to its original self. In this 
case, the position of any of the transformed vertices v1’, v2’ or v4’ can only be determined through a line-
plane intersection between a partial edge and the plane of an original face topologically connected to 
the original position of the vertex about to be determined. Only one out-of-face intersection can be 
determined at a time, since the vertex position resulting from the operation is always resting on one 
original face plane. As a result, all subsequent intersections will be in-face and thus have higher priority 
than all other remaining out-of-face ones.  

2.3. The implementation. 
In order to test the viability and robustness of the described workflow, the previously described concepts 
and rules were implemented as part of the 3DGS research and development framework, created at the 
Polyhedral Structures Lab at University of Pennsylvania. The framework was developed as an extension 
for the popular 3d modeling program Rhinoceros. All the figures presented in this paper are directly 
derived from the explorations undertaken with the implemented solution. The algorithm is written as a 
modified BFS (Breadth First Search), with multiple inner loops and an expansion behavior based on the 
transformation prioritization rules described in the previous sections. In a similar fashion to the 
theoretical workflow decomposed above, the algorithm starts from a given set of vertex translations and 
reconstructs partial edges and faces. The step by step completion of those elements through various 
intersection techniques yields additional transformed vertices. Those vertices bring more edges and faces 
in the transformation process closing a loop, that only ends when there are no more elements to be 
transformed. Figure 3 shows a high-level overview of the algorithm’s most important steps. 

 

Figure 2. Intersection types. 

(a) (b) (c) 

Figure 3. Overview of the implemented algorithm 
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The implemented version of the algorithm is based on a custom data structure capable to encode the 
various stages of the transformation. The tool is capable to transform large polyhedral sets with hundreds 
of cells and thousands of vertices while giving live visual feedback to the user.  

2.4. A transformation example.  

Figures 4.a to l show the step by step process of transformation for a typical simple polyhedral cluster. 
The cluster has 7 cells, grouped in one single layer for reasons pertaining to process visibility. The gray 
line background plus the gray points and gray notations, refer to the original geometry of the polyhedral 
cluster. The blue overlay, including the blue dots and the blue notations with apostrophe, refers to the 

Figure 4. A typical polyhedral group transformation in steps. 
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transformed geometry. The blue fill tracks the geometry completed in the current step. The gray fill 
refers to the fully transformed faces completed in the previous steps. At each step the blue arrows show 
the position and direction of the available partial edges. The dark gray thick line overlay depicts the 
transformation path walked so far by the process and the dark blue line shows the current step. 

The transformation starts from the translation of vertex v0 into v0’ (see Fig. 4.a). All other 27 vertex 
positions are calculated starting from here, using the procedures and rules described in the previous 
section. Since point at p0’ is placed inside of a cell and not in any particular position on a face-plane or 
along an edge, the only available intersections for the first step are out-of-face intersections. The first 
out-of-face intersection is computed by intersecting partial edge e(0’,3’) with the face plane of f(3,17,19,5) to 
get the location for the translation of v3 into v3’. In the next step, pictured in Fig. 4.b, the transformation 
of v3 in v3’ propagates to all edges topologically connected to v3. From all the potential intersections 
added, two can be classified as in-face passive intersections. Those are the ones corresponding to the 
topological connections to v5 and v17. The passive in-face intersections have precedence according to the 
rules of transformation prioritization, since all other available intersection are out-of-face. In Fig. 4.b 
partial edge e(3’,17’) has already intersected e(17,19) to produce transformed vertex v17’. Evaluating all partial 
edges present in the system at this step, shows that now we have an active in plane intersection. The 
intersection occurs between two partial edges pointing towards a new position for original vertex v14. 
Both edges are in the face-plane of partial face f(0’,3’,17’). Since this is the only active in-face intersection 
in the waitlist at the moment, we can operate it and thus get the position for v14’. The operation also 
completes f(0’,3’,17’,14’) highlighted in blue in Fig. 4.c and produces two other partial edges anchored in 
the same v14’. Having exhausted all in-face active intersections, the transformation proceeds with another 
passive intersection visible in Fig. 4.c, to find a position for v5’. In Fig. 4.d, two partial edges anchored 
in transformed v17’ and v5’ forming an active intersection, come together in the original position for v19. 
This means v19 is parsed but not translated by the transformation process. In the same figure, newly 
completed face f(3’,17’,19,5’) is highlighted.  

Over the next figures, the film of the transformation is accelerated with multiple operations depicted in 
each image. The process switches between passive in-face intersections used to add new geometrical 
information to the mass of transformed parts inside polyhedral group and active in-face intersections to 
complete transformed faces and expand the transformed group of elements. For instance, Fig. 4.e and h 
depict new positions for transformed v16’, v25’ and v26’ and the associated new partial edges. Figures 4.f, 
g, i and j, show the completion of multiple partial faces (depicted in blue) through active in-plane 
intersections.  Intersections shown, also produce positions for moved vertices and new partial edges that 
sometimes result in a continuous active intersection streak as exemplified in Fig. 4.i and j. The final 
steps of the transformation are shown in Fig. 4.k. Here, the last vertices are computed and if necessary 
translated. Figure 4.l depicts the final form of the polyhedral system after all its vertices have been 
parsed.  

2.5. Applications 
From a 3D Graphic Statics point of view, the algorithm’s utility has been explored mainly in the realm 
of the form. The technique’s main merit is the ability to explore multiple geometries of a form diagram 
that remain reciprocal to a force polyhedral group. This exploration can empirically or algorithmically 
determine the degrees of freedom of certain geometries and thus inform the user on how to proceed with 
the design from an early stage. Any polyhedral geometry, provided it has some degrees of freedom, can 
lend itself to being transformed while remaining reciprocal to its dual counterpart. Using this, select 
elements of the geometry can be resized, supports or applied forces can be moved and the parts of the 
system can be translated or otherwise manipulated with regard to the whole. Figure 5 shows the local 
manipulation of a simple shell through the translation of vertices. Figure 5.a shows the result of three 
consecutive vertex translations that move both supports and applied force locations, completely 
transforming the look of the shell. In Fig. 5.b the first set of transformations are fully processed and a 
new transformation is initiated through the translation of a vertex from the upper part of the shell towards 
the bottom. This transformation reduces the thickness of the shell without altering the overall distribution 
of the supports and applied forces.  The final geometry of the shell is shown in Fig. 5.c. 
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Figure 5. Local manipulation of a dual layer shell 

Although the manipulation of form polyhedral diagrams has been the scope of this paper, the presented 
workflow and algorithm are equally as potent in transforming the force diagram in a 3DGS reciprocal 
relationship. For the force, the manipulation can be used to set values for certain exterior face areas, thus 
effectively transforming the boundary conditions of the whole system. For the interior faces, constrained 
manipulation of the faces can control the transformation of the load path. As a result, within the same 
loading conditions, similar support placement and identical topology, multiple ways of load distribution 
can be investigated.  

Even though convexity of the faces and cells was presented as a constraint in the objectives of this 
research, the resulting tool is limited to convexity neither in the input nor in the results. Working with a 
force polyhedral system, the tool can be very useful in switching from pure compression or tension 
(convex) to compression-tension combined by transforming some convex faces into concave or complex 
ones. See example in Fig. 5. Vertex v0 is moved beyond the convexity limits of the system resulting in 
a number of complex (self-intersecting) faces and cells and also a number of flipped edges and faces 
with a negative length or area. Figure 5.a shows the transformation of the geometry, up to the limit of 
convexity for all elements. In Fig. 5.b, the same point translation goes beyond the limit of convexity and 
some edges (shown in red) are flipped. Some faces also flip and their shape can be followed using the 
point notations. Figure 5.c shows the full final geometry of the polyhedral group. 

3. Conclusions 

We have shown a fully geometric solution for the constrained manipulation of polyhedral groups inside 
a reciprocal relationship with their dual and demonstrated its ability to transform polyhedral groups 
while keeping the original normal direction of all faces unaltered.   

Figure 6. A transformation example that goes beyond the convexity limits 
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Limitations 
There are several limitations to the transformations possible using the presented algorithm. First, all 
manipulations are dependent on the degrees of freedom of the polyhedral group. This is in general 
inversely proportional to the percentage of triangular faces in the group. Some overly constrained 
systems (with many triangular faces) will only be uniformly scaled due to formal rigidity. Also 
depending on the degrees of freedom, local manipulations of the geometry can have global effects. This 
can result in unwanted change in other parts of the system. Second, an exact quantification of the 
transformation results is not yet possible. While the user can set specific values for the input 
manipulations, the results, due to the complex nature of the geometrical interactions are not always 
predictable. To address this, more research is needed. Third, even though any input transformation can 
be translated into points, a proper user interface helping with that is yet to be created. At the moment, 
complex manipulations, involving multiple synchronized offsets for faces or edges, are still problematic 
to test even though they are theoretically possible.  

Future research 
These are just a few of the envisioned uses for the algorithm presented in the previous pages. As stated 
before, one of the main benefits for the described tool is the exploration of manipulation possibilities for 
polyhedral clusters locked in a reciprocal relationship with their dual. Because of this, the present 
research should also be understood as a tool and a vehicle for the investigation of the possible 
manipulations in polyhedral groups. In order to fully understand the possibilities that this tool opens for 
3DGS research in particular and polyhedral geometry in general further work is needed.   

References 
[1]  M. Akbarzadeh, T. V. Mele, and P. Block, “On the equilibrium of funicular polyhedral frames and 

convex polyhedral force diagrams”, Computer-Aided Design, vol. 63, pp. 118–128, 2015.  

[2]  M. Akbarzadeh, T. V. Mele, and P. Block, “3D Graphic Statics: Geometric construction of global 
equilibrium”, IASS 2015:Future Visions, Amsterdam, 2015. 

[3] M. Akbarzadeh, “Three Dimensional Graphical Statics using Polyhedral Reciprocal Diagrams,” 
dissertation, Zurich, 2016. 

[4] E. D. Demaine and J. O'Rourke, Geometric folding algorithms: linkages, origami, polyhedra. 
Cambridge University Press, 2008. 

[5] K. Ikeuchi, “Recognition of 3-D Objects Using the Extended Gaussian Image.”, IJCAI, pp. 595-600, 
1981 

[6] M. Konstantatou, A. McRobie, “Reciprocal construction using conic section and Poncelet duality”, 
IASS 2016: Spatial Structures in the 21st Century, Tokyo, 2016. 

[7] J. Lee, T. V. Mele, and P. Block, “Area-controlled construction of global force polyhedra.”, IASS 
2017: Interfaces - Architecture. Engineering. Science, Hamburg, 2017. 

[8] J. Lee, T. V. Mele, and P. Block, “Form finding explorations through geometric transformations and 
modifications of force polyhedrons”, IASS 2016: Spatial Structures in the 21st Century, Tokyo, 2016. 

[9] A. McRobie, "The geometry of structural equilibrium", Royal Society Open Science, vol. 4, no. 3, 
pp. 160759, Mar. 2017. 

[10] S. Moni, “A closed-form solution for the reconstruction of a convex polyhedron from its extended 
Gaussian image”, Proceedings. 10th International Conference on Pattern Recognition, 1990 

[11] W. J. M. Rankine, “XVII. Principle of the equilibrium of polyhedral frames,” The London, 
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 27, no. 180, pp. 92–92, 
1864. 


	Constrained Manipulation of Polyhedral Systems
	Abstract
	1. Introduction
	1.1. Problem statement
	1.2.  Objectives

	2.  Theoretical framework.
	2.1. Transformation propagation
	2.1.1. Vertices registering edges and faces
	2.1.2. Closing the transformation loop

	2.2. Transformation prioritization
	2.2.1. Intersection types and priority

	2.3. The implementation.
	2.4. A transformation example.
	2.5. Applications

	3. Conclusions
	We have shown a fully geometric solution for the constrained manipulation of polyhedral groups inside a reciprocal relationship with their dual and demonstrated its ability to transform polyhedral groups while keeping the original normal direction of ...
	Limitations
	Future research

	References

