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Abstract 
3D graphic statics using reciprocal polyhedral diagrams (3DGS) is one of the recent developments in 
the field of geometry-based structural form finding and is a powerful method in generating spatial 
structural forms and their force diagram in three dimensions. However, constructing reciprocal 
polyhedral diagrams in 3D is quite challenging and the research lacks a rigorous mathematical definition 
formulating the geometrical and reciprocal relationship between the form and force diagrams in 3DGS.  
Having been used for the past 150 years, 2D graphic statics has recently been formulated algebraically 
that allows better topological understanding the relationship between the form and the force diagrams 
in 2D. Such algebraic formulation is crucial in developing interactive tools enabling designers and 
practitioner to exploit the potentials of working with the form and force diagrams by computationally 
drawing the reciprocal diagrams for each design iteration which was otherwise quite tedious and 
cumbersome. This paper provides initial formulation of the reciprocal relationships between polyhedral 
form and the force diagrams in 3DGS and lays a foundation for further research in algebraic 
implementation of 3DGS.  

Keywords: Algebraic methods, 3D graphic statics, reciprocal constructions, constraint equations  

1. Introduction 
In the past decade, geometry-based structural design methods, commonly known as Graphic Statics, 
have received much attention from researchers in the field of structural design and architecture for their 
unprecedented control in design, form finding and optimization of unique structural solutions (Van Mele 
et al. [1], Beghini et al. [2], Akbarzadeh [3], Lee et al. [4], and McRobie [5]). However, the procedural 
graphic statics as it was practiced in the late nineteenth century is quite cumbersome and time-consuming 
(Maxwell [6], Cremona [7], and Wolfe [8]). The geometry-based techniques in combination with 
computational methods result in innovative design tools allowing the further exploration of the realm of 
sophisticated, yet efficient structural equilibrium (Block [9]). Rhino Vault is an excellent example that 
combines 2D reciprocal diagrams with the force density methods and allows for the design of free-form 
shell structures (Rippmann et al. [10], Sheck [11]).  

The algebraic implementation of the conventional/2D graphic statics is another valuable example that 
allows the interactive manipulation of both form and force diagrams, and therefore, indeed exploits the 
pedagogical potential of graphical methods in the age of computational power (Van Mele and Block 
[12], Alic and Åkesson [13]).  This formulation provides a rigorous understanding and control of 
various characteristics of the systems such as geometric degrees of freedom and the degrees of 
indeterminacies of complex structural forms and their reciprocal force diagrams. As a result, a user can 
control the magnitude the forces in specific edges of the form diagram (members of the structure) as 
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well as some essential geometric properties such as the length and the location of the supports without 
disturbing the internal and external equilibrium [12, 13].   

1.1. Problem Statement and Objectives 

3D Graphical statics is a recent development of the geometric principles of equilibrium in three 
dimensions based on a historical proposition by Rankine [14] and Maxwell [6] in 1864 [3, 4, 5]. In 
3DGS, the form and the force diagrams are reciprocal polyhedral diagrams that are topologically dual 
and geometrically perpendicular; the equilibrium of each node of a polyhedral frame with its 
applied/internal forces is represented by a closed force polyhedron whose faces are perpendicular to the 
forces of the node. The area of each face represents the magnitude of the corresponding force to keep 
the node in equilibrium.  

The geometric construction of these reciprocal diagrams is the primary step in using 3DGS methods. 
Currently, there are multiple geometric approaches for the construction of these reciprocal polyhedrons. 
Akbarzadeh et al. provided an iterative approach in constructing the reciprocal form for a given system 
of polyhedral cells (Akbarzadeh et al. [15]). Although the iterative method is a robust way of 
constructing these reciprocal diagrams, the precise controlling the edge lengths are quite cumbersome: 
any manipulation introduced by the user in the geometry of the form breaks the equilibrium states and 
requires a new iterative process. In another approach, McRobie et al. suggest the projection of the 
polyhedral system to the fourth dimension and bring back to the third by using paraboloid of revolution 
[5]. Although this fundamental approach is quite robust, it might be relatively counter-intuitive for the 
users with limited experience with geometric constructions in 3D space.    

Therefore, there is a lack of a proper mathematical formulation for construction of reciprocal diagrams 
of 3D graphic statics. Note that the algebraic 3DGS provides us with a better understanding of the 
geometric degrees of freedom of the polyhedral systems, and therefore, allows for the interactive 
manipulation of these diagrams for design purposes. Thus, the primary objective of this paper is to 
provide an algebraic approach to formulate and to construct these reciprocal polyhedrons. Moreover, the 
method of this research can be applied to both form and force polyhedrons to build their reciprocal 
diagram.   

2. Theoretical Framework 
This paper introduces the algebraic formulation for the determinate reciprocal polyhedral diagrams. 
Providing a complete algebraic formulation for constructing reciprocal diagrams of 3DGS with full 
control over edge lengths and the magnitude of forces for indeterminate cases is beyond the scope of 
this paper.  

2.1. Reciprocal Polyhedrons in 3DGS 

The form and force diagrams in the context of 3DGS have certain topological features that needs further 
explanation before the explanation of their algebraic relationships.    

2.1.1. Form polyhedrons 

Usually, in the context of 3DGS, we describe the form diagram as a group of polyhedrons with both 
open and closed cells. The open cells that are usually on the exterior of the system represent the applied 
forces and the location of the supports [15].  

2.1.2. Force polyhedrons 

The force diagram, on the other hand, consists of closed polyhedral cells. There is one cell in the group 
of polyhedrons that represents the global equilibrium of the system, and the rest of the cells represent 
the nodal equilibria. If the global force cell is the external force polyhedron in the system, then the 
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system can describe the equilibrium of compression/tension-only system of forces (depending on the 
properties of the form diagram). The global force polyhedron can also be any other cell in the group of 
cells. Note that the direction of the faces of the global force polyhedron defines the direction of the faces 
of the interior cells: for each interior cell if it is adjacent to the global, it will have the same face 
directions. If the internal cell is adjacent to another internal, it will have the opposite face direction.  

 Topological relationships 
Form and force polyhedrons are topologically dual and geometrically reciprocal. I.e. the vertices v , 
edges e , faces f  and cells c  of one diagram corresponds to cells *c , faces *f , edges *e  and vertices 

*v  correspondingly. In this context, we call the input diagram the primal and its reciprocal the dual. 
Moreover, each edge e  of the primal is perpendicular to a face of the dual.  

2.1.3. Input geometry 
Whether we start from the force diagram or the form diagram, in both scenarios, we have one diagram 
open and the other one closed. 

 

 

 

Figure 1: Rounding each edge of the input with its attached faces (a) provides the direction of the edge vectors of 
the corresponding face (b) in the reciprocal diagram where sum of the edge vectors must be zero.  

2.2. Developing the algebraic constraints 
To develop the algebraic constraints, we revisit Maxwell’s groundbreaking paper, “On reciprocal 
figures, frames and diagrams of forces” [6]. The excerpt of the paper denoting the idea is as follows:   

“Round any edge of the first diagram draw a closed curve, embracing it and no other edge. However 
small the curve is, it will enter each of the cells which meet in the edge. Hence the reciprocal of this 
closed curve will be a plane polygon whose angles are the points reciprocal to these cells taken in 
order.” 

Simply put, consider an edge ie  of the primal diagram and all its attached faces 1f , 2f , ..., kf  (Fig. 

1a). The edge ie  is reciprocal to a face *
if  in the dual. By moving the thumb along the direction of the 

edge, the fingers curl around the edge going through its attached faces. Each normal jn̂  of a face jf  is 

parallel to an edge vector *
je  of the polygon *

if (Fig. 1b). Moreover, the direction of the edge vectors 
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*
je  are consistent and the sum of the edge vectors around the polygon *

if  should be zero. i.e. the sum 

of the unit normal jn̂  times the length jq  of the edge vector *
je  should be zero: 

 0=ˆ...ˆˆ 2211 kkqqq nnn ±±±±  (1) 

Since the faces might have arbitrary directions, the in̂  of each face attached to the edge ie : 
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2.3. Equilibrium matrix 
Let us denote the −x , −y  and −z  coordinates of the vectors in̂  as ixn ,

iyn  and izn  respectively. The 

vector equation 1 can be written as three linear equations and the equation 1 becomes: 
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 (2) 

These equations can be written in a linear equation system resulting in a fe×3  matrix that we can call 
the equilibrium matrix A: 

Aq = 0 (3) 

2.4. Reducing the number of equilibrium equations 
In the previous sections, we showed how to obtain the constraint equations and the equilibrium matrix. 
However, the constraint equations may not be independent of each other. In the following sections, we 
propose two ways to decrease the number of constraint equations significantly. 

2.4.1 The dependent equations around each edge 
Section 2.2 showed that each interior edge of the primal polyhedral complex gives rise to three constraint 
equations. However, these equations are linearly dependent. Consider the very edge ie  of the Section 

2.2 with its connected faces kf 1  and its reciprocal face *
if  in the dual. Let us denote a vector parallel 

to the edge ie  by ie . The vector ie  is not only perpendicular to the face *
if , but it is also perpendicular 

to all the edge vectors *
je  and all k1n̂ . Therefore, their dot products are zero:  

 0.=ˆ,0,=ˆ0,=ˆ 21 kiii nenene ⋅⋅⋅   

As a consequence, we obtain that  

0.=)ˆ...ˆˆ( 2211 kki qqq nnne ±±±±⋅  (4) 

This implies that the three constraint equations in Equation system 2 are linearly dependent. In particular, 
the equilibrium matrix A  can be reduced to a ][2 fe×  matrix. 

2.4.2 The dependent equations of the adjacent faces 
There is another way to reduce the number of constraint equations of the equilibrium matrix using 
topology. Each closed polyhedral cell *

ic  in the dual complex can be described by 1* −f  faces where 
*f  denotes the number of faces of that cell. For a group of polyhedral cells ** cf −  faces are enough 

to completely describe the geometry where *c  denotes the number of cells. Since each face *
if  and *

ic  
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correspond to the edge ie  and vertex iv  of the primal then ve −  edges are enough to fully describe the 
geometry of the dual. Therefore, )2( ve −  equations are enough to complete the equilibrium matrix. 
Therefore, the equilibrium matrix A can be reduced to a ])[2( fve ×−  matrix. 

2.5. Solving equilibrium equations 
The dimension of the solution vectors for the linear equation system 3 is rf −  where r  is the rank of 
the equilibrium matrix A. For a determinate system, rf −  is 1, and therefore, we have a unique solution 
(up to scaling and translation). Since, the main concentration of this paper is to introduce the algebraic 
folmulation, solving the intederminate systems is beyond the scope of this paper.     

2.6. The geometry of the dual 

nce we obtained the edge lengths of the dual, we need to construct its polyhedral geometry by finding 
the coordinates of its vertices. The coordinates of the vertices can be found by having the topology and 
the direction of the edges of the dual to complete the geometry. 

2.6.1. The topology of the dual and its edge directions 

The connectivity of the edges *e  and vertices *v  that defines the topology of the dual can be easily 
found by establishing the connectivity of their reciprocal components, faces f  and cells c , in the 

primal. Two adjacent cells ic  and jc  share a face kf ; that is, their dual vertices, *
iv  and *

jv , are 

connected by an edge *
ke . Note that the direction of the faces of a polyhedral cell in the primal is either 

towards inside or outside of the cell. If the direction of the face kf  in primal matches the direction of 

the same face in the cell ic , then the tip of the edge *
ke  in the dual is at the vertex *

iv ; otherwise, at *
jv

. 

2.6.2. The coorindates of the vertices 

To find the coordinates of each vertex of the dual, we can establish a tree graph for the topology of the 
dual. The tree graph, in this case, is a graph with an arbitrary vertex, such as *

0v , as the root that includes 
all paths to every other vertex of the dual starting from the root with no closed loop.To draw the geometry 
of the dual, each segment of the tree graph should acquire its length and direction. The length of each 
segment is identical to the length of each edge found in Section 2.5 and its direction follows the direction 
of the cell ic  reciprocal to the vertex *

iv  at the tip of the segment. Note that this direction might be 

different than the direction of the edge *
ke  as found in Section 2.6.1 By choosing an arbitrary coordinates 

for the root vertex *
0v , the rest of the vertices can be found by translating the root using the segment 

vectors of each path. 

2.7. The direction of the internal forces 

We can specify the direction of forces in the members of the dual by matching the direction of the edge 
vector of the dual with the direction of a cell in the primal corresponding to the vertex at the tip of the 
vector. For instance, if the primal represents the force diagram, the type of force in the edge *

ie  of the 

form can be found as follows: if the edge vector *
ie , a vector from *

jv  to *
kv , is aligned with the direction 

of the normal in̂  of its corresponding face if  in the cell kc , the member is in compression; otherwise, 
it is in tension. 
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Figure 2: Input geometry as both form and force diagrams: (a) external polyhedron as the global force 
polyhedron; (b) the reciprocal compression-only form; (c) the input as the form and external polyhedron 

excluded to identify the applied forces, and (d) the reciprocal force diagram. 

2.8. Example 

In this section, we provide an explicit example demonstrating the theoretical explanations in the previous 
sections. Consider a polyhedral complex with its faces constructed as a cube with vertices at 1)1,1,( ±±±  
connected to a vertex at (0,0,0)  in its center. Therefore, the primal will include 8  external faces of the 
cube and 12  internal triangular faces with a vertex at the center sharing an edge with an external faces 
of the cube (Fig. 2ª). 

2.8.1 The equilbirum equations 

For each interior face, we choose an arbitrary normal direction as:  

2,2),(0,=ˆ(2,2,0),=ˆ(0,2,2),=ˆ2,2,0),(=ˆ 4321 −− nnnn  

2),2,0,(=ˆ2,0,2),(=ˆ2),2,0,(=ˆ2),(2,0,=ˆ 8765 −−−−−− nnnn  

(0,2,2)=ˆ2,2,0),(=ˆ2),(0,2,=ˆ(2,2,0),=ˆ 1211109 nnnn −−  

The equilibrium vector equations around the edges 1e , 2e , ..., 8e  are the following:  
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These 8  equations can be written as 24  linear equations once we write the equations in terms of the 
−x , −y  and −z  coordinates. Explicitly, the part of the Equilibrium matrix A  corresponding to the 
−x coordinates is the following:  
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We can see that the vector 1q =  satisfies 0=qAx . Similarly, one can show that it actually satisfies 
the equation system 3 as well. Indeed the edge lengths of the dual complex are all equal. 

2.8.2 Constructing the geometry of the dual 

The topology of the dual can be found by the connectivity of the cells in the primal as explained in 
Section 2.6.1. There are six interior cells 50c  in the primal that are reciprocal to six vertices in the dual 

*
50v . There are 12  faces 110f  that are shared between every two cells that gives the edges *

110e  of 
the dual. We can find the tree graph for the topology of the dual as it was explained in Section 2.6.2. 
Starting the root of the tree at *

0v , all the paths 0...4p  from the root to complete the tree graph are the 
followings:  
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Note that in this case, path 2p  has two segments from *
0v  to *

1v  and from *
1v  to *

3v . By choosing the 

coordinates of the root vertex *
0v , the rest of the vertices can be found using the edge lengths kiq  from 

the previous section and the direction of the cells corresponding to the tip of each segment in the path. 

2.8.3 The input as form diagram 

The same procedure can be used to construct the force diagram for a given form polyhedron. I.e. the 
primal can be considered as the form diagram (Fig. 2b). In this case, one polyhedral cell should be 
considered as the applied forces (in this case the external), and all the edges connected to the vertices of 
the chosen polyhedron will be the applied forces to the system. Writing the equilibrium equations around 
all the edges of the system except the edges of the external polyhedron gives an equilibrium matrix 
resulting in the force distribution of the given form (Fig. 2c).  

3. Conclusions and future work 

This paper provided the algebraic formulation for construction of polyhedral reciprocal diagrams of 
3DGS. The same formulation can be used to analyze and construct indeterminate polyhedral systems, 
but solving the equilibrium equations to control the area of faces and the use of geometric degrees of 



Proceedings of the IASS Symposium 2018 
Creativity in Structural Design 

 

 

 8 

 

indeterminacies in manipulating the polyhedral systems will be addressed in the next stages of this 
research.    
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