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a b s t r a c t

The recently developed 3D graphic statics (3DGS) lacks a rigorous mathematical definition relating
the geometrical and topological properties of the reciprocal polyhedral diagrams as well as a precise
method for the geometric construction of these diagrams. This paper provides a fundamental algebraic
formulation for 3DGS by developing equilibrium equations around the edges of the primal diagram and
satisfying the equations by the closeness of the polygons constructed by the edges of the corresponding
faces in the dual/reciprocal diagram. The research provides multiple numerical methods for solving the
equilibriumequations and explains the advantage of using each technique. The approach of this paper can
be used for compression-and-tension combined form-finding and analysis as it allows constructing both
the form and force diagrams based on the interpretation of the input diagram. Besides, the paper expands
on the geometric/static degrees of (in)determinacies of the diagrams using the algebraic formulation
and shows how these properties can be used for the constrained manipulation of the polyhedrons in an
interactive environment without breaking the reciprocity between the two.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In graphic statics, the geometry of the structure and its equi-
librium are represented by the form and force diagrams where the
length of themembers, the location of the supports and the applied
loads are represented by the former, and the equilibrium and the
magnitude of the forces are represented by the latter. These two
diagrams are reciprocal, i.e. topologically dual and geometrically
dependent [1]. In fact, themethods of graphic statics are essentially
the geometric construction of these two reciprocal diagrams for
various geometries, loading cases, and boundary conditions.

1.1. Reciprocal diagrams and their constructions

In 2D graphic statics, as it was developed and practiced in
the late nineteenth century, the construction of the reciprocal
diagrams was a step-by-step geometric construction [2–5]. This
procedural approach is quite cumbersome and lengthy for the
structures with multitudes of members, and any design iteration
requires a new construction process. This slow workflow could be
the reason for the shift towards the development of the numerical
methods at the end of the nineteenth century.

Graphic statics in combination with computational methods
result in innovative design tools allowing the exploration of the
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realm of unique, sophisticated, yet efficient structural solutions.
Using computational methods can significantly accelerate the
construction of the reciprocal diagrams and exploit the explicit
relationship between the form of a structure and its geometric
equilibrium of forces in an interactive environment [6,7].

The topological and geometrical relationships between the re-
ciprocal diagrams of 2D graphics statics (2DGS) have recently been
formulated as algebraically-constrained equations whose numer-
ical solutions allow the direct construction of the diagrams in an
interactive environment [8,9]. Besides, the algebraic formulation
of the graphic statics is a rigorous approach providing an in-depth
understanding of some essential properties such as the geomet-
ric/static degrees of indeterminacies of both form and force dia-
grams. These parameters can be used interactively to manipulate
the geometry of these diagrams without breaking the reciprocity
between them.

1.2. Problem statement and objectives

3DGraphical statics is a recent development of graphic statics in
three dimensions based on a historical proposition by Rankine [10]
andMaxwell [1] [11–15]. In 3DGS, the form and the force diagrams
are polyhedral diagrams; the equilibrium of each node of the form
with its applied loads/members is represented by a closed force
polyhedron whose faces are perpendicular to the loads/members
of the node. The area of each face of the force polyhedron repre-
sents the magnitude of the force in the corresponding member of
the node.

https://doi.org/10.1016/j.cad.2018.08.003
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Similar to 2DGS, the geometric construction of the recipro-
cal polyhedral diagrams is the most crucial step in using 3DGS
methods. [16] explained a step-by-step procedural approach to
construct both form and force diagrams of 3DGS for a given bound-
ary conditions and loading scenario with the similar drawbacks
of the procedural 2DGS methods. Additionally, [17] suggested a
computational implementation based on iterative geometric con-
struction to find reciprocal forms for a given group of closed,
convex polyhedral cells. Although the proposed method is quite
robust in generating the reciprocal diagrams, the precise control
of the edge lengths of the members of the diagrams is quite chal-
lenging.Moreover, themethod cannot construct the reciprocals for
complex/self-intersecting polyhedrons representing the systems
with both tension and compression members. Besides, any ma-
nipulation introduced by the user in the geometry of the form or
force diagram breaks the reciprocity and requires a new iterative
computation. In another research, [18] suggested the projection
of the polyhedral system to the fourth dimension and projecting
it back to the third dimension by using paraboloid of revolution
thatmight be relatively counter-intuitive for the userswith limited
experience with geometric constructions in 3D space.

In fact, in all mentioned methods, there is a lack of a proper
mathematical/algebraic formulation for the reciprocal polyhedral
diagrams limiting the interactive implementation of 3DGS. Thus,
the primary objective of this paper is to provide an algebraic
formulation to relate the reciprocal diagrams and a comprehensive
approach to construct and manipulate the reciprocal polyhedrons
for compression/tension-only systems as well as the systems with
both tension and compression forces.

1.3. Paper outlines and contributions

Section 2 of this paper explains the theoretical framework of
the research in the following order: the essential properties of
the form and force diagrams including the nodal, global, and self-
stressed polyhedrons (Section 2.1); the topological properties as
well as the incidence matrices to describe the connectivity of the
components of the primal and the dual diagrams (Sections 2.2, 2.3);
the algebraic constraints between two reciprocal diagrams and the
process of developing the equilibrium equations to find the lengths
of the edges of the dual diagram (Section 2.4); and the solution
space for the equilibrium equations and the methods to construct
the geometry of the dual (Sections 2.5, 2.6). The algebraic approach
of this research can construct the reciprocal diagram for both
form and force diagrams as the primal input. Therefore, Section 2
also explains the procedures for the primal to be considered as
a form or force diagram in the approach (Sections 2.7, 2.8), and
expands on the geometric and static degrees of (in)determinacies
of the systems based on the properties of the equilibrium matrix
(Section 2.9).

Section 3 explains the computational implementation of the
algebraic formulation of 3DGS and provides three different numer-
icalmethods for solving the equilibriumequations. In Section 4, the
form finding, analysis, and constrained polyhedral manipulation
applications of the presentedmethod are explained and finally the
limitations, and the future research directions for this research are
listed in Section 5.

1.4. Nomenclatures

Wedenote the algebra objects of this paper as follows;matrices
are denoted by bold capital letters (e.g. A); vectors are denoted by
lowercase, bold letters (e.g., v), except the user input vectorswhich
are represented byGreek letters (e.g.,λ); the topological data of the
primal diagram are described by italic letters (e.g., f ); and the data
corresponding to the dual and reciprocal diagram are represented
by italic letters with a † sign (e.g., f †). Table 1 encompasses all the
notation used in the paper.

Table 1
Nomenclature for the symbols used in this paper and their corresponding
descriptions.

Topology Description

Γ Primal diagram
Γ † Dual, reciprocal diagram
v # of vertices of Γ
e # of edges of Γ
f # of faces of Γ
c # of cells of Γ
v† # of vertices of Γ †

e† # of edges of Γ †

f † # of faces of Γ †

c† # of cells of Γ †

Matrices

Ce×v Edge–vertex connectivity matrix of Γ
Ce×f Edge–face connectivity matrix of Γ
Cf×c Face–cell connectivity matrix of Γ
A Equilibrium matrix
A+ Moore–Penrose inverse of A
Arref Reduced Row Echelon form of A
Arref
r×f Obtained by deleting all zero rows of Arref

Nx Diagonal matrix of the x-coords of n̂i
Ny Diagonal matrix of the y-coords of the n̂i
Nz Diagonal matrix of the z-coords of the n̂i
L† Laplacian of Cf×c

Vectors

n̂i Unit normal vector of face fi
x x-coords of v
y y-coords of v
z z-coords of v
u x-coord differences of v
v y-coord differences of v
w z-coord differences of v
x† x-coords of v†

y† y-coords of v†

z† z-coords of v†

u† x-coord differences of v†

v† y-coord differences of v†

w† z-coord differences of v†
q Solution of the equilibrium equations

Parameters

σ Parameter fixing the location of a vertex of Γ †

ξ Parameter for the Moore–Penrose inverse method
ζ Parameter for RREF method
λ Parameter for the Linear programming method

Other

r Rank of A
ψei Indicator of the type of internal forces of e†i

2. Theoretical framework

In this section, we briefly explain the properties of the recip-
rocal polyhedral diagrams of the 3DGS and set a foundation to
describe the algebraic approach to construct these diagrams using
a simple example.

2.1. Form and force diagrams as groups of polyhedral cells

In the context of 3DGS, both form and force diagrams consist of
polyhedral cells inwhich there is an external polyhedron including
all the external faces, and the rest of the cells are inside the external
polyhedron. Each edge shares an identical vertex with its adjacent
edges, and similarly, each face shares an identical edge with its
adjacent faces and finally, each cell shares an identical face with
its adjacent cells.

Global and nodal force polyhedrons
The force diagram of 3DGS consists of closed polyhedral cells

that can be decomposed into the following: a global cell or global
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Fig. 1. (a) A polyhedral structure with an applied load and reaction forces at
the support and (b) its corresponding force diagram consisting of 10 faces and 5
polyhedral cells; (c) the global force polyhedron (GFP) with the direction of its faces
toward inside the cell; and (d) the faces of GFP construct nodal force polyhedrons
(NFP) whose directions are inherited from the faces of the GFP (three cells toward
outside (e.g. c1) and one toward inside (c0).

force polyhedron (GFP), and nodal cells or nodal force polyhedrons
(NFP) [12,19]. A GFP represents the static equilibrium of exter-
nally applied loads and reaction forces regardless of the geome-
try/topology of the structure. Each NFP represents the equilibrium
of forces coming together at that node in the form diagram. Similar
to the form diagram, each cell in a group of cells can be chosen
as the GFP; if GFP is the external polyhedron, the force diagram
can represent a compression/tension-only structural form. While,
if GFP is any other cell except the external cell, the force diagram
will represent the equilibrium of a force configuration with both
tensile and compressive forces.

External loads and reaction forces of the form
To explain the external loads and reaction forces in the form

diagram, consider the example of a polyhedral joint with an
externally-applied force fk of Fig. 2a. This joint can be represented
as a group of polyhedral cells in the context of 3DGS as shown in
Fig. 3a. Fig. 3a includes four open cells and no closed cell where the
open cells represent the applied loads, the reaction forces, and the
location of the supports.

Generally, a group of polyhedral cells with no open cell may
represent a self-stressed system of forces with no externally-
applied loads [1]. Replacing the dashed edges in the form diagram
of Fig. 2b with additional members will turn the form into a self-
stressed system [20]. Since in graphic statics we design the form
diagram for externally-applied loads and boundary conditions, so
we allow the form diagram to include open polyhedral cells [11].
Subtracting a cell from a group of closed polyhedral cells results
in both open and closed cells. We denote the subtracted cell the
self-stress polyhedron (SSP) since the group of polyhedrons could
be self-stressed otherwise.

In describing a form diagram, any cell, internal or external, can
serve as the SSP. Subtracting the faces of SSP from the group of
polyhedrons will leave the adjacent cells open and the rest of the
cells closed. The edges connected to the vertices of the chosen SSP
represent the vectors of the external loads and the reaction forces.
The start point or the end point of the vectors can represent the
location of the supports (up to translation). If the SSP is the external

Fig. 2. (a) A 3D structural joint with an applied force and internal forces in its mem-
bers; (b) the form diagram/bar-node representation of the same joint in the context
of 3DGS; and (c) the force diagram/polyhedron representing the equilibrium of the
same node in 3DGS.

Fig. 3. (a) The primal diagram Γ and (b) its reciprocal diagram Γ † as called dual
and their corresponding components.

polyhedron, all the internal edges connected to the vertices of the
external polyhedron will represent the applied loads and reaction
forces (Fig. 2b).

The direction of the cells in the form and force diagrams
Each cell, in both form and force diagrams, has a direction either

towards inside or outside the cell that is defined by choosing the
direction for the SSP/GFP. The direction of the SSP/GFP is either
towards inside or outside the cell. The faces of the cells adjacent to
the SSP/GFP will have the same direction as the faces of SSP/GFP.
Every other cell in the group, if not adjacent to SSP/GFP, has an
opposite direction of its adjacent cell.

For instance, consider the force diagram of Fig. 1a; the direction
of the GFP is determined by the direction of the externally applied
loads and the reaction forces at the supports. The direction of the
NFPs will be determined by the direction of GFP; each face of NFP
that is shared with the GFP will have the same orientation of the
GFP face whereas, the face shared by another NFP will always have
an opposite normal direction (Fig. 1b).

2.2. Topological and geometrical properties of the reciprocal polyhe-
drons

We can use the example of Fig. 3 to explain the topological
relationship between reciprocal polyhedral diagrams. Let us call
the starting diagram the primal, Γ , and the reciprocal polyhedron
the dual, Γ † (Fig. 3a, b). The vertices, edges, faces, and cells of the
primal are denoted by v, e, f , and c respectively, and the ones of the
dual are super-scripted with a dagger (†) symbol.

These two diagrams are topologically dual: i.e. the vertices v,
edges e, faces f and cells c of the primal topologically map to the
cells c†, faces f †, edges e† and vertices v†, respectively of the dual
diagram [11]. Therefore, the number of the dual elements in both
diagrams is the same. For instance, the number of vertices v of the
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Fig. 4. The primal diagram and the connectivity matrix given by its edges and
vertices.

primal is equal to the number of cells c† in the dual, etc. Moreover,
each edge e of the primal is perpendicular to its corresponding face
f † in the dual.

2.3. Connectivity of the components

To formulate the algebraic relationship between the primal and
the dual diagrams, the relation between the components of each
diagram should be described algebraically bymultiple connectivity
matrices for the vertices, edges, faces, and cells of the diagrams.

Edge–vertex
Let us consider theprimal and thedual diagramsof Fig. 3a, b: the

primal diagram includes arbitrarily-indexed vertices and the edges
pointing from a vertex with a smaller number to a vertex with a
bigger number (Fig. 4). For the primal diagram, the connectivity
matrix between the vertices and edges is a [e × v] matrix that is
shown by Ce×v , described as

Cei,vj =

{
+1 if vertex vj is the head of edge ei
−1 if vertex vj is the tail of edge ei
0 otherwise.

Since the edges and vertices of the primal map to faces and
cells of the dual, matrix Ce×v is equal to Cf †×c† that represents the
connectivity of the faces and cells of the dual.

Edge–face
The connectivity between edges and vertices, Ce×v , does not

describe the topology of the primal completely, and further con-
nectivitymatrices are required to describe the topological relation-
ships among other components of both primal and dual diagrams.
Each face fi of the primal has a unit normal vector n̂i where the
direction of the normal may be chosen arbitrarily (Fig. 5). This
direction defines the orientation of the edges ei on that face using
the right-hand rule.

Therefore, for each edge ei on the face fi there are twodirections:
one given by matrix Ce×v and one defined by the direction of the
unit normal of the face n̂i (Fig. 5). Thus, for the edges and their

Fig. 5. The connectivity of the faces and edges in the primal and its related matrix.

Fig. 6. The connectivity of faces and cells of the primal and its incidence matrix.

connected faces in the primal complex, the edge–face connectivity
matrix Ce×f is a [e × f ] matrix defined as

Cei,fj =

{
+1 if edge ei is an edge of face fj
−1 if opposite of edge ei is an edge of face fj
0 otherwise.

Note that matrix Ce×f can also describe the connectivity be-
tween the faces f † and edges e† of the dual complex and thus equals
matrix Cf †×e† .

Face–cell
To complete the topological definition of the primal complex,

the connectivity between the faces and cells of the primal should
be described by an incidence matrix Cf×c . The direction of each
face fi in the primal was chosen arbitrarily. However, the direction
of the cells is predefined as discussed in Section 2.1. We check
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Fig. 7. The edge–vertex connectivity of the dual diagram is the same as the face–cell
connectivity of the primal of Fig. 6.

the direction of face fi with the direction of the cell cj. Hence, the
incidence matrix for the faces and cells can be defined as (Fig. 6a,
b):

Cfi,cj =

{
+1 if face fi has the same direction as of cj
−1 if face fi has the opposite direction as of cj
0 otherwise.

Since faces f and cells c of the primal correspond to e† and v† of
the dual, the matrix Cf×c can describe the topological relationship
between the unknown edges and vertices of the dual complex and
therefore is equal to a [e† × v†

] matrix Ce†×v† (Fig. 7). Note that
the direction of the edges of the dual is a result of the face–cell
connectivity matrix. For instance, the edges are not necessarily
directed from smaller indices to bigger indices.

2.4. Algebraic reciprocal constraints

In this section, we describe the algebraic constraints for con-
structing the dual from the primal complex. The coordinate differ-
ence vectors, u, v,w can describe the edges of the primal as

u = Ce×vx v = Ce×vy w = Ce×vz (1)

where x, y and z vectors are the x-, y- and z-coordinates of the
vertices, and Ce×v is the incidencematrix for the edges and vertices
of the primal. Similarly, u†, v† andw† are the coordinate difference
vectors that can describe the edges of the dual as

u†
= Ce†×v†x† v†

= Ce†×v†y† w†
= Ce†×v†z†.

Since vertices and edges of the dual correspond to the cells and
faces of the primal, we can write:

u†
= Cf×cx† v†

= Cf×cy† w†
= Cf×cz†, (2)

where x†, y† and z† are the vector of x-, y- and z-coordinates of the
vertices of the dual, and Cf×c is the connectivity matrix of the face
and cells of the primal.

The first set of constraints is imposed by the faces of the dual:
around every face fi†, the sum of the coordinate differences of
the edges u†, v†, and w† has to be zero. The faces fi† of the dual
correspond to edges ei of the primal, and edges ei† of the dual
correspond to the faces fi of the primal. Therefore, the first set of
constraints can be described as

Ce×f u†
= 0 Ce×f v†

= 0 Ce×fw†
= 0. (3)

Moreover, the edges of the dual ei† and the corresponding nor-
mal vectors of the faces of the primal n̂i are parallel that establishes
the second set of constraints. In other words, around each internal
edge ei and its adjacent faces fi−k in the primal, the sum of the
normal vector of the faces n̂i multiplied by the length qi of the
corresponding edge e†i in the dual diagram should be the zero
vector (Fig. 8).

LetNx,Ny andNz be the [f×f ]diagonalmatriceswhose diagonal
entries are the x-, y- and z-coordinates (respectively) of the chosen
unit normal vectors of the faces of the primal. Further, let q denote
the scale vectors or the force densities that define the lengths of the
edges of the dual [21]. Therefore, the second set of constraints can
be written as

u†
= Nxq v†

= Nyq w†
= Nzq. (4)

Combining Eqs. (3) and (4) results in

Ce×fNxq = 0 Ce×fNyq = 0 Ce×fNzq = 0. (5)

We call the [3e × f ] matrix

A =

⎛⎝ Ce×fNx
Ce×fNy
Ce×fNz

⎞⎠
the equilibriummatrix of the problem. Any solution of the equation
system

Aq = 0 (6)

gives us a possible vector (force density) for the edge of the dual,
and hence a possible solution to the problem of constructing the
dual.

2.5. Solutions

The dimension of the solutions q satisfying Eq. (6) is equal to the
dimension of the right nullspace of A. I.e. if we have r independent
equations, the dimension of the right null space is equal to f − r .
The r is the number of independent equations of (6) which is equal
to the rank of the equilibriummatrix A. For instance, Fig. 3a shows
a primal polyhedral system that includes tetrahedral cells with the
SSP chosen as the exterior cell with equilateral triangle faces. The
matrix A for this primal will be as follows:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
MatrixA of this example is a 12× 6matrix of rank 5 (r = 5). The

dimension of the right nullspace, (f −r), is 6−5which equals 1 and
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Fig. 8. Going around each edge of the primal with its attached faces (a) provides the
direction of the edge vectors of the corresponding face (b) in the reciprocal diagram
where the sum of the edge vectors must be zero.

therefore, there is a unique solution (up to scaling and translation)
(Fig. 3b).

2.6. Constructing the geometry of the dual

We developed two approaches to construct the geometry of
the dual, and we will explain both methods in this section. The
first approach is purely algebraic, whereas the second approach
involves a graph-search algorithm to construct the geometry of the
dual.

Algebraic approach
Once we find a solution q for Eq. (6), we can compute the

coordinate difference vectors u†, v†, and w† using Eq. (4).
In order to construct the geometry of the dual, we need to

compute the coordinates x†, y†, z† of the vertices of the dual. Given
a solution q, the vectors u†, v† andw† are determined, and from (3)
and (4) we have

Nxq = Cf×cx† Nyq = Cf×cy† Nzq = Cf×cz†. (7)

Multiplying both sides with the transpose Cc×f of the incidence
matrix Cf×c results in the Laplacian matrix L† on the right side

L†
= Cc×f Cf×c,

and therefore,

Cc×fNxq = L†x† Cc×fNyq = L†y† Cc×fNzq = L†z†. (8)

The [c×c] Laplacianmatrix L† is a positive semi-definitematrix,
and it is not invertible. In fact, the translation vectors u†, v†, andw†

need a chosen point in the three-dimensional space to result in a
unique solution for x†, y† and z†. Therefore, we start by choosing a
vertex v†

0 of the dual as the starting point of the construction and
set its coordinates to be all zeros (0). Once these coordinates are
set, the vectors u†, v†, andw† uniquely determine x†, y† and z† and
the whole geometry of the dual.

We formulate the above discussion algebraically as follows:
consider the [1×c] row vector σ whose first entry is 1, and the rest
of the entries are all 0. Then, the solutions of the linear equations

σ · x†
= 0 σ · y†

= 0 σ · z†
= 0

are exactly those x†, y†, and z† vectors whose first entry is zero (0).
We add this linear equation to Eq. (2), obtaining a [(f + 1) × c]
matrix

Cσ
f×c =

(
σ

Cf×c

)

Fig. 9. Graph-search approach to construct the geometry of the dual: (a) the
connectivity of the cells in primal corresponds to the connectvity of the vertices
of the dual; and (b) each vertex of the dual can be described with a path from the
vertex (v0).

and a [(f + 1) × 1] column vectors

u†
σ =

(
0
u†

)
v†

σ =

(
0
v†

)
w†

σ =

(
0
w†

)
.

The solutions of the equation systems

Cσ
f×cx

†
= u†

σ Cσ
f×cy

†
= v†

σ Cσ
f×cz

†
= w†

σ (9)

are exactly those solutions of the original Eqs. (2) whose first
coordinates are zero (0). The columns of the matrix Cσ

f×c are
linearly independent, hence the equation systems of (9) have a
unique solution. This unique solution can be computed by using
the Moore–Penrose inverse of the matrix Cσ

f×c that is denoted by
Mσ

f×c as

Mσ
f×c =

(
Cσ
c×f C

σ
f×c

)−1Cσ
c×f .

Here, Cσ
c×f denotes the transpose of the matrix Cσ

f×c .
Explicitly, the unique solutions are given as

x†
= Mσ

f×c · u†
σ y†

= Mσ
f×c · v†

σ z†
= Mσ

f×c · w†
σ

Note that the square matrix Cσ
c×f C

σ
f×c is very similar to the

Laplacian of the original incidencematrixCf×c in that all the entries
but the top left are equal. We remark that the square matrix
Cσ
c×f C

σ
f×c is a positive definite matrix.

Graph-search approach
We can also avoid the algebraic approach in constructing the

dual to find the tree graph of the dual using the face–cell topology
of the primal. The tree graph includes paths from a chosen vertex
to all other vertices with no closed loops that can be found using
Breadth-First-Search (BFS) algorithm.

To construct the geometry, we can assign particular x-, y-,
z-coordinates to a vertex of the dual v†

0 and use it as the starting
point of the construction. This step is the same as choosing a start
point in the previous section. Then, we find all paths including
segments of the dual parsed from vertex v†

0 to reach to each vertex
v
†
i . Each segment in each path includes a start and end vertex

corresponding to two cells with a shared face fi in the primal. Each
segment must be weighted by the force density qi, and it has the
direction of the normal n̂i of the corresponding face in the cell
reciprocal to the end vertex.

For instance, Fig. 9b shows three paths to find all the coordinates
of the vertices of the dual for the primal of Fig. 3a. The path p(0,1), in
this case, includes one segment where the length q0 is multiplied
by the direction of the normal of the face f0 in the cell c1.

2.7. Primal as the force diagram

The previous sections described an algebraic approach to con-
struct the reciprocal diagram for a given primal. This method is a
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bi-directional approach in the context of 3D graphic statics. I.e. the
primal can be considered as either the form or the force diagram.
If the primal is considered as the force diagram, the GFP should be
defined to find the direction of the cells for thewhole complex. The
dual will be the form of a structure where the configuration of in-
ternal and external forces is in equilibrium according to the primal.

For instance, Fig. 10a illustrates a group of closed polyhedral
cells representing the force diagram as the primal. The GFP is
the external force polyhedron with face normals pointing toward
inside the cell. All other NFPs are convex, and their direction can
be defined by the GPF. The algebraic formulation finds the dual as
a compression/tension-only structural form illustrated in Fig. 10b.

Tensile vs compressive members
For a primal as the force diagram the type of internal forces in

the members of the dual should be defined. To find the direction
of the force, we need to compare the topological and geometric
directions of the edge e†i of the dual which has vertices v†

j and v†
k ,

and the order of the vertices is given by the connectivity matrix
Cf×c . The geometric direction of the vector e†

i is given by the vector
starting from v†

j and ending at v†
k . The direction of a vector from the

topological order is the direction of the normal n̂i of the face fi in
the cell ck. Therefore

ψei = e†
i · n̂k (10)

where ψ is the dot product of the two directions. According to the
following definition we can find the type of internal force in each
member:

if GFP

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
negative (inward)

{
if ψei > 0 : e†i is compressive

if ψei < 0 : e†i is tensile

positive (outward)

{
if ψei > 0 : e†i is tensile

if ψei < 0 : e†i is compressive

For instance, if the GFP is the external cell, and its direction
is inward, then the direction of all the NFPs is consistent and
inward. Therefore, the topological directionmatches the geometric
direction. In such cases, simply the sign of q can definewhether the
member is in tension or compression. If qi corresponding to the
length of the edge e†i is positive, then the edge e†i is a compressive
member, and if it is negative it will be a tensile member.

Therefore, if all the qi of a solution vectors q are positive, then
the dual is a compression-only system, and if all negative, all the
edges are tensile depending on the direction of the GFP (Fig. 10a,b).
Choosing any other cell as the GFP results in a formwith combined
tensile and compressive forces (Fig. 11).

2.8. Primal as the form diagram

The primal can also be considered as the form diagram. In this
case, the SSP needs to be chosen to define the external loads and
the reaction forces (Fig. 10b). Once the SSP is chosen, the edges con-
nected to the vertices of the SSP represent the applied forces on the
form. The same algebraicmethod can be used to construct the force
diagram for a given form; the equilibriumequationswill bewritten
around all edges except the edges of SSP. Fig. 10c shows a primal
as the form diagramwhere the SSP is the exterior polyhedron. The
resulting diagram of Fig. 10d is the force diagram representing the
force magnitudes and the equilibrium of the primal.

2.9. The degrees of geometric and static (in)determinacy

If the primal is the form diagram, the dimension of the right
nullspace of the equilibriummatrixA, (f−r), in fact, is the degree(s)
of geometric (in)determinacy of the dual complex that is the force

Fig. 10. (a) A group of polyhedral cells as the primal where GFP is the external
cell; (b) the dual complex representing the form diagram resulted from algebraic
approach; (c) the same polyhedrons as the form diagram where the vertices of the
external polyhedron define the externally-applied loads; and (d) its reciprocal force
diagram.

Fig. 11. Choosing a different GFP results in compression and tension combined
systems.

diagram. Note, that the geometric degrees of indeterminacy of
the dual are the degrees of static (in)determinacy of the primal
complex.
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Fig. 12. The computational flowchart for algebraic reciprocal construction.

This number is always a non-negative integer: if it is zero (f −

r = 0), this means that the only solution of Eq. (6) is a zero vector
(q = 0) where the dual collapses into a single point which is not
considered as a solution in the context of 3DGS.

If the degree equals one (f − r = 1), the set of solutions of Eq.
(6) is one-dimensional, that is unique up to scaling. In this case, a
non-zero value of a coordinate qi of the solution q determines the
values of the rest of the coordinates. Simply put, there is only one
family of solutions for the dual, and therefore, the form is statically
determinate. Figs. 3, 10 and 11 show examples of input diagrams
whose the duals are geometrically determinate. If the primal, is the
form diagram, then it is statically determinate.

If the degree or the dimension of the right nullspace is more
than one (f − r > 1), there exist at least two solutions up to scaling
and translation. That is, the dual is geometrically indeterminate
thus the primal (form) is statically indeterminate.

If the primal complex is the force diagram, then the geomet-
ric degrees of (in)determinacy of the dual represent a family of
structural forms that are in equilibrium given the primal force
distribution. For instance, Fig. 13 shows an example of an input
complex as the force diagram with several significantly different
duals/forms, hence the dual is geometrically indeterminate.

3. Computational setup

In this section, we explain the computational setup as it is illus-
trated in the flowchart of Fig. 12. In this flowchart, the primal is the
force diagram, and the algebraic method is used for form finding.
However, the same setup can be used for structural analysis if the
primal is the form diagram as explained in Section 2.8.

3.1. Constructing the winged-edge data structure

The computational setup has been implemented in the environ-
ment of Rhinoceros software [22] and the input includes series of
connected planar faces representing a group of polyhedral cells.
The first step in the computational setup is to define the topology
of the primal complex including the cells, edges and faces and
construct their connectivity matrices. Winged-Edge data structure
(WED) or alike can be used to find all possible convex cells and
the topological relationships [11,23]. One of the current limitations
of this implementation is that the input cannot accept complex
(self-intersecting) faces, and therefore, it can only find convex
polyhedral cells.

3.2. Assigning GFP and its direction

The method we propose in this paper is applicable to both
form finding and analysis. In the form-finding approach, the user
should define the GFP to find the direction of the cells in the primal
complex. For compression/tension-only form finding, the external
polyhedron is chosen as the GFP. The direction of the internal cells
is found by the direction of the GFP as explained in Section 2.1.

3.3. Solving equilibrium equations

Writing the equilibrium equations around the edges of the
primal (except the edges of the global cell/exterior cell) results in
the equilibriummatrixA. In the following sectionswedemonstrate
several methods to solve Eq. (6) for q and highlight the advantages
of using each method.

3.3.1. Moore–Penrose inverse method
The equilibrium matrix A is usually not invertible. We can use

the Moore–Penrose inverse (MPI) of A denoted by A+ to solve Eq.
(6). The A+ of A satisfies the following matrix equations

AA+A = A, A+AA+
= A.

From the first equality, any vector q of the form

q = (I − A+A)ξ (11)
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Fig. 13. A force diagram as a primal with the external cell as its GPF (a) and the
reciprocal diagram computed by using algebraic methods (b) that has 10 degrees
of geometric indeterminacy highlighted as the independent edges (c) and the user
input parameters to explore variety of compression-and-tension combined forms
in equilibrium (d), (e) and (f).

solves the linear equation system Eq. (6) where I is the [f × f ]
identity matrix and ξ is any [f × 1] column vector. In fact, all
solutions of Eq. (6)will have the formof Eq. (11) [24,25]. Hence,MPI
can generate all the solutions of the equilibrium equations. Note,
that the user can choose the components of the vector ξ . For in-
stance, assigning 1 to all components gives us a dual solution with
a well-distributed edges lengths. Moreover, for primal input with
multiple axes of symmetry, this approach results in symmetrical
dual solution (Fig. 13a,b). However, the user cannot specify certain
edge lengths to particular edges of the dual. In order to address
this limitation, we propose the following approach to solve the
equilibrium equations.

3.3.2. Reduced row echelon form approach
Since the dimension of the solutions of the equilibrium equa-

tions is f−r , therefore,wehave exactly f−r independent equations
in the equilibrium matrix. This means that we can specify the
length of f − r edges of the dual and the rest of the edges will be
determined accordingly. Simply put, a user can interact with f − r
independent edges to manipulate the geometry of the dual.

The reduced row echelon from (RREF) Arref of the matrix A
identifies the independent edges of the dual, because the rank of
A equals the number of pivots in Arref . The independent edges
correspond to those columns of Arref where there is no pivot. The
coordinates corresponding to these columns can be represented
by a [(f − r) × 1] column vector ζ . Any chosen value for the
components of the ζ will determine the geometry of the dual.

To address the approach mathematically, we reorder the
columns of the Arref matrix so that the pivots are in the main
diagonal. Then we exclude all zero rows of the matrix to obtain
a [r × f ] matrix Arref

r×f . The first r columns of this matrix form the
[r × r] identity matrix, I. We denote the [r × (f − r)]matrix formed
by the last f − r columns by B, so that

Arref
r×f = (I|B) . (12)

We can use Arref
r×f q = 0 as the new equilibrium matrix in Eq. (6)

as

Arref
r×f q = 0. (13)

The solutions of Eq. (13) are the same as the solutions of Eq. (6),
except that the coordinates of the solution vector are reordered as
the last f − r coordinates correspond to the independent edges.

We denote the [r × 1] column matrix corresponding to the
first r coordinates of q by qr and the [(f − r) × 1] column matrix
corresponding to the last f −r columns by ζ . Using these notations,
the equation system (12) becomes

Iqr + Bζ = 0.

Therefore, the vector ζ which corresponds to the length of the
independent edges determines the rest of the solution vector:

qr = −Bζ .

As a result the user can choose the length of the independent edges
to manipulate the geometry of the dual.

Although any (positive/negative) values can be chosen for the
independent edges, there is no guarantee that if all the indepen-
dent edges have positive values the rest of the edges will also be
positive and the resulting geometrywill be a compression/tension-
only system (edges with positive lengths). To address this limita-
tion, we suggest using linear programming approach to solve the
equilibrium matrix.

3.3.3. Linear programming approach
We can use the following linear optimization setup to find a

dual diagram with all positive edge lengths:

Solve

{Aq = 0
q ≥ 1
min(q · λ)

(14)

where 1 is the [f × 1] vector whose all coordinates are one (1) and
λ is a vector that can be chosen by the user. The solution of this
linear programming setup is a solution vector q of the equilibrium
equation (6) whose coordinates are at least one (1) minimizing the
objective function

q · λ =

f∑
i=1

qiλi.

Various linear programming software or packages can be used to
solve this linear optimization problem.

Note that Eq. (6) may not always have a positive solution.
However, if there are positive solutions, then we can find one by
using the linear programming approach given that λ > 0.

In addition, different λ vectors yield different objective func-
tions. For instance, the objective function given by λ = 1 is the
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sumof the lengths of the edges of the dual. Hence the solution of Eq.
(14) is a solutionwhichminimizes the total edge lengths of the dual
given that all edges are of length at least one (1). This method can
be used to generate structural solutions in 3D with the minimum
load-paths that can significantly reduce the use of materials in the
structure [26].

3.3.4. Improving the speed and precision
The speed and precision of the mentioned approaches to solve

Eq. (6) can be significantly improved by eliminating redundant
rows of A prior to any computation. Authors, in an earlier publica-
tion, developed twomethods to eliminate redundant rows ofA that
results in a matrix with only 2(e − v) rows, instead of the original
3e number of rows [27].

3.4. Constructing the dual

Once a solution vector of Eq. (6) is obtained, we can construct
the geometry of the dual either using the algebraic method or
the graph-search method as described in Section 2.6. After the
dual is constructed, the user can decide to redesign, manipulate
or optimize the geometry of the dual by assigning different values
to the parameters relevant to each method.

4. Application

The algebraic approach in constructing reciprocal diagrams has
three main applications in the context of 3DGS: funicular form
finding, structural analysis, and constrained polyhedral manipula-
tions. The following sections will expand on each application.

Compression/tension-only form finding
The algebraic approach enables us to explore a variety of spatial

configuration of the forces as funicular forms with compression/
tension-only internal forces as well as structural forms with both
tensile and compressive internal forces. In the form-finding appli-
cation, the input is the force diagram, and the user should choose
the GFP to specify the direction of the NFPs.

Consider a primal complex which includes closed, convex poly-
hedral cells. If the external polyhedral cell is chosen as the GFP,
with the direction of its faces towards inward, then the dual
with all positive edge lengths will represent the equilibrium of a
compression-only dual/funicular form.

Figs. 10 and 13–15a,b show the force polyhedron with convex
cells as the primal and their compression-only forms as a result of
using algebraic method. Note that in all these examples, the GFP is
chosen as the exterior polyhedron in the primal.

Compression and tension combined form finding
As mentioned in Section 2.7, for a given primal as the force

diagram with closed polyhedral cells, choosing any cell other than
external force polyhedron results in a structural form with the
compression and tension combined internal forces (Fig. 11).

Constrained polyhedral manipulation of the form
Often, a designer needs to change/manipulate the geometry

of the dual or form of the structure to address certain boundary
conditions or to change the location of the applied loads. Algebraic
computation of the dual allows for manipulating the geometry of
the dual without breaking the reciprocity between two diagrams,
i.e., without changing the direction of themembers and preserving
the planarity of the faces of the dual.

As mentioned in Section 2.9, the dimension of the right
nullspace of the equilibrium matrix A is the geometric degrees of
(in)determinacy of the dual. If the degree is larger than one, there

aremultiple solutionswith significantly different edge lengths and
geometrically different forms.

For instance, Fig. 13b has 10 degrees of indeterminacy, and the
user can explore a variety of solutions by changing the length of
the independent edges of the dual. The independent edges can be
identified using the RREFmethod as explained in Section 3.3.2. The
user can specify the lengths of these edges by assigning positive or
negative values to the corresponding coordinates of ζ and recom-
pute the dual with the change in its geometry (Fig. 13c–f).

In Fig. 13b,c, the values of q are all positive which results in a
compression-only solution; whereas in Fig. 13d–f, the values are
a combination of positive and negative resulting in systems with
combinations of both tensile and compressive forces for the same
input force diagram. Figs. 14 and 15 also show the method used
to calculate the dual from an input force diagram where the user
changes the values of ζ and calculates various family of solutions
with both tensile and compressive internal forces. Therefore, the
algebraicmethod allows us to explore a variety of spatial structural
forms with both tensile and compressive forces without changing
the force equilibrium.

Structural analysis
The method explained in this paper can be used for both form

finding and analysis as described in Sections 2.7 and 2.8. If the
primal is considered the form, the dual will represent its force
diagram. For statically determinate cases, there will always be a
single solution (up to translation and scaling). Therefore, all the
examples used in previous sections can be used in a reverse order
as shown in Fig. 10.

For indeterminate cases, the method can be used to explore
variety of equilibrium states with various internal and external
forces. Although for statically indeterminate cases, we might be
able to change the edge lengths of the dual which is the force
diagram, controlling the area of the faces and optimizing the values
of the internal and external forces of the dual requires additional
set of constraints that were not addressed in this paper and will be
investigated in future research.

5. Conclusions and discussions

This paper provided an algebraic formulation to construct re-
ciprocal polyhedral diagrams of 3D graphic statics. The approach
can be used to construct both form and force diagrams based on
the interpretation of the input. The paper explained the process of
developing the algebraic constraints and the equilibriumequations
for the reciprocal diagrams and provided three computational
methods including the Moore–Penrose inverse method (MPI), the
Reduced Row Echelon Form (RREF) approach and the Linear pro-
gramming method (LP) to solve the equilibrium equations.

The MPI method can be used to construct symmetrical recip-
rocal diagrams if the primal is symmetrical; the RREF approach
can be used to identify the independent edges of the dual that al-
lows generating various solutions with different edge lengths and
proportions. The LP method is an excellent approach to generate
compression-only results since both MPI and RREF might result in
the dual with positive and negative edge lengths.

Additionally, the paper provides insights in determining the
geometric/static degrees of (in)determinacy of the reciprocal di-
agrams. For indeterminate cases, the deliberate control of the edge
lengths allows exploring andmanipulating a variety of solutions in
equilibriumwithout changing the planarity of the faces and break-
ing the reciprocity between two diagrams which is a significant
achievement of this paper.
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Fig. 14. A force diagram as a primal and its dual with 8 degrees of geometric indeterminacy (a) and the compression-only as well as compression-and-tension combined
reciprocal diagrams computed by applying the user input parameters (b), (c) and (d).

Fig. 15. A force diagram as a primal and its dual with 11 degrees of geometric indeterminacy (a) and various compression-and-tension combined reciprocal diagrams
computed by applying the user input parameters (b), (c) and (d).

Limitations and future research directions
The current approach has the following limitations; although

the dual can be a group of polyhedrons with complex (self-
intersecting) faces, the current implementation does not accept

input with complex (self-intersecting) faces. Expanding the func-
tionality of the data structure to work with self-intersecting cells
as input will improve the functionality of the computational work-
flow that will certainly be addressed in future research.
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The algebraic formulation of this paper is capable of construct-
ing a reciprocal force diagram for determinate form diagrams
which is unique (up to translation and scaling), and the areas of
the faces represent the magnitude of the forces in the primal. Al-
though in graphic statics usually designers deal with the statically
determinate structural system, controlling the areas of the faces of
the dual for indeterminate primal/forms was not addressed in this
paper.

In indeterminate cases, there are multiple force distributions
to describe the equilibrium of the form, and controlling the areas
of the faces of the dual allows to find the optimized solution
among them. Constructing optimized reciprocal constructions by
controlling the areas of the faces using algebraic approach is the
next step of this research.

The current computational methods heavily rely on precise
calculation of the rank of the equilibrium matrix. In other words,
the geometric degrees of (in)determinacy of the dual complex are
determined by the rank (r) of the equilibriummatrixA. Thus, small
accumulation of numerical errors might result in an imprecise
calculation of r that, in turn, leads to an incorrect dual complex.
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