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ABSTRACT 

Strut-and-tie models are principally the discretized stress fields, which simplify the 
dimensioning and detailing of reinforced concrete members. The computational 
generation of stress fields currently relies on finite element analysis or optimization 
methods. This research addresses the limitations of optimization algorithms in 
producing reasonable strut-and-tie configurations. The computational procedure of this 
paper utilizes layout optimization and graphic statics cooperatively to create strut-and-
tie models and stress fields for two-dimensional cases. The presented examples 
demonstrate the capabilities of the mentioned methods to produce some desired results 
for two-dimensional scenarios and suggest a similar approach to solve the strut-and-tie 
problem for three-dimensional cases. 

1.  INTRODUCTION 

The strut-and-tie model (STM) is a truss-like system with a set of compressive struts 
and tensile ties, which simply represents the load transfer mechanism in a reinforced 
concrete member, where concrete only contributes to the compression and steel is 
activated in tension. The model was intuitively developed at the onset of the twentieth 
century without a theoretical rationale (Ritter 1899 and Mörsch 1906). Its primary goal 
was to understand the reinforced concrete behavior after cracking. Since the cracked 
concrete assumed to have no tensile strength, the concept has later found justification 
in the lower bound theorem of plasticity (Nielsen et al. 1978). Later, useful guidelines 
were issued leading to popular applications of truss (named as strut-and-tie) models in 
structural concrete practice (Schlaich et al. 1987). STMs could be considered as 
discrete representations of stress fields (SFs). The concept of SF was introduced by 
Drucker (1961) as a direct application of plasticity theory for a simply supported 
reinforced concrete beam subjected to point and distributed loads. SF and STM are 
complementary in satisfying equilibrium and yield criteria of the lower bound theorem 
of plasticity. Therefore, a combination of the methods is typically used in practice to 
provide safe solutions. The strut-and-tie method has been covered by several concrete 
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design guidelines for the dimensioning and detailing of structural concrete; however, 
the challenge typically is how to construct appropriate configurations. In practice, the 
model is normally created intuitively and iteratively, similar to the load path method 
introduced by Schlaich et al. (1987). The use of linear elastic finite element analysis 
was also proposed by Schlaich et al., where the model is formed by orientating the 
struts and ties according to the principal stresses.  

Over the past two decades, extensive research has been conducted on the 
development of methodologies to computationally generate mainly two-dimensional 
strut-and-tie patterns based on the flow of stresses within a structural domain. These 
studies are based on the various formulations of finite element analysis (Muttoni et al. 
2015) or optimization algorithms (Liang et al. 2000, Ali and White 2001). The popular 
optimization algorithms are based on topology or layout optimization.  

Topology optimization addresses the question of material distribution within a 
structural domain subjected to given load and support conditions in order to achieve a 
better structural performance, generally a minimized compliance or strain energy 
(Bendsøe and Kikuchi 1988). Since the resulting pattern is similar to the stress flow 
inside the structure, it has been used as a backdrop for the orientation of truss elements 
in the STM (Liang et al. 2000). Layout optimization (LOPT) (Dorn 1964, Fleron 
1964), based on the ground structure, assumes a grid of nodes and elements connecting 
these nodes in a given domain. The result is the optimum size for each element for 
specified boundary conditions (i.e. load and support). The optimum sizes (i.e. cross 
sections) below a threshold, normally the ones close to zero, lead to omission of some 
elements from the initial ground structure. Thus, a final layout of the optimized 
structure is induced. Since this algorithm produces a truss or a load path inside a 
structural domain, it has been applied to generate STMs (Ali and White 2001). Figure 
1 shows the application of the mentioned optimization methods in the development of 
STMs. 

 

Figure 1: Generation of STM based on: (top) topology optimization (TopOpt for 
Grasshopper 2018); (bottom) layout optimization. 



3 
 

1.1. PROBLEM STATEMENT AND OBJECTIVES 

Although there exist promising results with the computational generation of STMs or 
SFs using optimization algorithms, narrow focus is given on the practical aspects of 
the outcomes. The reason could be that these techniques provide single (i.e. the 
optimized) solutions, where the control over the results cannot always be achieved by 
manipulation of the constraints. Therefore, these solutions sometimes require further 
refinements or simplifications to make a useful STM, for example, with proper 
location, length and orientation of the ties. Moreover, while using topology 
optimization (e.g. Figure 1 top), an extra effort is required to devise a feasible load 
path from a material distribution pattern and then calculate the member forces. 
However, the resulting pattern from LOPT (e.g. Figure 1 bottom) is already a truss in 
static equilibrium with known member forces.  

On the other hand, the geometrical method of graphic statics (GS) provides the 
flexibility to develop choices of tension-compression truss-like structures, while 
maintaining the static equilibrium. It functions with the reciprocal form and force 
diagrams representing the geometry of a truss structure and its force magnitudes, 
respectively (Culmann 1864 and Maxwell 1864). This technique has recently been 
computationally developed and used to provide a wide range of typologies for fixed 
boundary conditions (Lee et al. 2016, Nielsen et al. 2017 and Tabatabaei Ghomi et al. 
2018). Furthermore, since the information of the force magnitudes is available 
geometrically through the force diagram, the discontinuous SFs could be created using 
Minkowski sum (McRobie 2016). 

This study attempts to utilize the potentials of GS to overcome the mentioned 
inadequacies of the optimization algorithms. One thing to note is, although GS could 
provide a variety of load path patterns by modifying form or force, an automatic 
initiation of a pattern accounting for the design domain (i.e. the structure’s geometrical 
boundary) and boundary conditions using GS is not trivial and requires trial and error; 
Alic and Persson (2018) manually created an initial model to perform a further 
optimization algorithm on the form and force diagrams to get an initial reinforcement 
layout. Therefore, in order to be able to use GS, an initial model is required, which we 
suggest to obtain from an LOPT algorithm (Ali and White 2001).  

The ultimate goal of this research is to provide educators and practitioners with 
a range of useful STM solutions, where each is evaluated based on criteria such as 
reinforcement volume, fabrication, durability, etc. 

This paper presents a methodology to combine the formulations of LOPT and 
algebraic graphic statics (AGS) (Van Mele et al. 2014) to provide an initial truss 
model (form diagram) and its corresponding force diagram. The geometric Minkowski 
sum is used to combine the form and force diagrams to create discontinuous stress 
fields (McRobie 2016). The further investigation on the potentials of GS for 
modification of the outputs or providing more solutions for a defined problem and 
application of the same strategy to three-dimensional problems are work in progress. 
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2.  METHODOLOGY 

As mentioned, since the initiation of an STM accounting for the design domain and 
boundary conditions using GS requires trial and error, an initial model could be 
provided using LOPT. In this section, we first provide the basic formulation of LOPT 
and AGS separately, then introduce a combined version to produce initial form and 
force diagrams for a given domain and boundary condition. The Python programming 
language (2016) is used for the computational implementation. For the graph 
manipulations, the COMPAS framework has been utilized (2017). 

2.1. LAYOUT OPTIMIZATION 

A basic LOPT formulation is a linear programming defined as (variables in bold): 
 

min 𝑉𝑉 = 𝑙𝑙𝑇𝑇𝒂𝒂 (1a) 
                          𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:  

       𝐵𝐵𝒇𝒇 = 𝐹𝐹 (1b) 
                           −𝜎𝜎𝐶𝐶𝒂𝒂  ≤ 𝒇𝒇 ≤  𝜎𝜎𝑇𝑇𝒂𝒂 (1c) 

    𝒂𝒂 ≥  0 (1d) 
           𝒇𝒇𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 ≤  0 (1e) 

 
where 𝑉𝑉 is the total volume of the structure, 𝑙𝑙 and 𝑎𝑎 are the vectors of length and cross-
sectional area of the members, (1b) is the equilibrium condition constraint with 𝐵𝐵 as 
the cosine-connectivity matrix, 𝑓𝑓 the member forces vector and 𝐹𝐹 the external loads 
vector, (1c) is the stress constraint with 𝜎𝜎𝐶𝐶 and 𝜎𝜎𝑇𝑇 as factored yield stresses in 
compression and tension, (1d) limits the areas to non-negative values and (1e) is an 
additional constraint on the diagonal member forces to only carry compression, which 
aids in producing simpler truss patterns with no crossing diagonals. 

The objective in (1a) is to minimize the total volume of the structure subjected 
to (1b)-(1e) constraints. The outputs of the optimization are 𝑓𝑓 and 𝑎𝑎 vectors and the 
minimized objective value (i.e. the total volume 𝑉𝑉). The members with zero or very 
small cross sectional areas will be removed leading to a truss pattern as a subset of the 
original ground truss (see Figure 2). The first order ground truss is chosen here. 

It should be noted that the objective function in (1a) is a reformulation of the 
objective function in Beghini et al. (2014) and Alic and Persson (2018), where instead 
of a ground truss, an initial determinate truss is manually devised from topology 
optimization and linear elastic finite element analysis, respectively. 
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Figure 2: Layout optimization: (left) input ground truss; (right) output optimized 
truss (blue: compression, tension: red, dashed: zero-area). 

2.2. ALGEBRAIC GRAPHIC STATICS 

The AGS formulation makes it possible to develop the reciprocal relationship between 
the form and force diagrams computationally, based on the structural matrix analysis 
and the graph theory. The detailed steps are explained in Van Mele and Block (2014). 
Here, we repeat two of the main equations, leading to calculation of the forces using 
the equilibrium condition in (2a) and node coordinates of the force diagram in (2b) for 
a given form diagram (i.e. the truss geometry): 
 

                        𝐴𝐴𝐴𝐴 = 0 (2a) 
          𝑋𝑋∗ = 𝐿𝐿∗ −1𝐶𝐶∗𝑄𝑄𝑄𝑄 

𝐿𝐿∗ = 𝐶𝐶∗𝐶𝐶∗𝑇𝑇 
(2b) 

 
where 𝐴𝐴 is the equilibrium matrix, 𝑞𝑞 is the vector of member force densities (i.e. force 
divided by length), 𝑋𝑋∗and 𝐶𝐶∗are the coordinate and connectivity matrix of the force 
diagram, 𝑄𝑄 is the diagonal matrix of vector 𝑞𝑞 and 𝑈𝑈 is the coordinate difference matrix 
of the form diagram.  

By solving (2a) with taking the known elements of 𝑞𝑞, 𝑞𝑞𝑖𝑖𝑖𝑖, and its 
corresponding partitions of 𝐴𝐴 to the right side, the unknown force density vector, 𝑞𝑞𝑑𝑑, is 
calculated. By constructing the complete 𝑞𝑞 vector and substituting 𝑄𝑄 in (2b), 𝑋𝑋∗, the 
node coordinate matrix of the force diagram, is obtained (𝐶𝐶∗ and 𝑈𝑈 are known, once 
the truss geometry is given). Having 𝑋𝑋∗and 𝐶𝐶∗, one can plot the force diagram as it is 
shown in Figure 3. The Bow’s notation (1873) shows the reciprocal relationship 
between the truss elements in the form diagram and their force magnitudes in the force 
diagram. 
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Figure 3: Algebraic graphic statics: (left) input graph (form diagram); (right) 
output dual graph (force diagram) (Bow’s notation in blue (1873)). 

2.3. COMBINED ALGORITHM 

As it is observed, the equilibrium conditions in LOPT and AGS, (1b) and (2a), allow 
the calculation of the forces (or force densities). Also, in order to generate the force 
diagram, the optimized truss (Figure 2 right) is used as input for AGS (Figure 3 left).  
However, if the output is an indeterminate structure, extra effort (i.e. finding the 
independent edges and assigning them the correct densities) is required to produce 
similar force densities as optimization. The combined formulation avoids the double 
consideration of the equilibrium condition by calculating the force densities in the 
optimization process. The force densities are directly used in the second equation of 
AGS, where there is no need to find the independent edges in the case of an 
indeterminate pattern.  

In order to replace the force vector, 𝑓𝑓, in (1b) with the force density vector, 𝑞𝑞𝑑𝑑, 
matrix 𝐴𝐴𝑛𝑛  is created, where the rows related to the fixed directions (i.e. support 
directions) and the columns related to external load/support edges have been removed 
from matrix 𝐴𝐴 in (2a). The combined algorithm follows (variables in bold): 
 

min 𝑉𝑉 = 𝑙𝑙𝑇𝑇𝒂𝒂 (3a) 
                          𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:  

          𝐴𝐴𝑛𝑛𝒒𝒒𝒅𝒅 = 𝐹𝐹 (3b) 
                                −𝜎𝜎𝐶𝐶𝒂𝒂  ≤ 𝒒𝒒𝒅𝒅⨀𝑙𝑙 ≤  𝜎𝜎𝑇𝑇𝒂𝒂 (3c) 

    𝒂𝒂 ≥  0 (3d) 
              𝒒𝒒𝒅𝒅,𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 ≤  0 (3e) 

  

       𝑋𝑋∗ = 𝐿𝐿∗ −1𝐶𝐶∗𝑄𝑄𝑄𝑄 (3f) 
 
where the term 𝑞𝑞𝑑𝑑⨀𝑙𝑙 is the element-wise product of the force density and length 
vectors. The optimization is performed with the constraints (3b)-(3e). Now, that the 
truss geometry and force densities are known, the coordinates of the force diagram can 
be calculated with (3f). 
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In the next step, a visualization of discontinuous SFs (including hydrostatic 
nodes) is possible by scaling the force diagram proportional to the concrete’s factored 
compression strength (fc) and adding it to the form diagram using the Minkowski sum. 
This is an advantage of having both diagrams through GS. Figure 4 shows the 
schematic input/outputs for the combined algorithm including the resulting SFs. 

  

 

Figure 4: (1) Input truss/boundary condition; (2) output form and force 
diagrams; (3) Minkowski sum of the diagrams; (4) conventional discontinuous 

stress fields. 

3.  EXAMPLES 

Figures 5 and 6 show the application of the method for several boundary conditions. 
When the geometry is regular or without opening, the solutions look simpler. Some 
solutions in Figures 5 or 6 may not directly be usable as an STM. For example, models 
3 and 4 in Figure 6 need simplifications. Also, the first models in Figures 5 and 6 with 
direct load transfer to the supports and long tension paths are undesirable. An 
admissible STM is simple, has a reasonable load transfer pattern with vertical ties for 
shear transfer (i.e. it can make use of the minimum reinforcement) and shorter 
reinforcement lengths (e.g. models 2 and 4 in Figure 5) (Kaufmann 2018). 

The examples provided here confirm that in many cases, relying only on 
optimization to generate a STM for the purpose of reinforced concrete design is not 
sufficient. The control over the optimization solution is not always achievable by 
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manipulation of the constraints. Therefore, sometimes a next step is required to refine, 
rationalize or simplify the output patterns. 

 

Figure 5: Application to boundaries with regular geometry: (top to bottom) 
boundary condition; optimized truss (form diagram); force diagram; 

discontinuous stress fields. 

4.  DISCUSSION AND OUTLOOK 

An optimization algorithm is combined with the algebraic formulation of graphic static 
to help generate initial STMs and discontinuous SFs. The presented examples indicate 
that the optimization solutions are not always satisfying. The irregularities in the 
domain, such as openings or non-rectangular shapes including the imposed initial 
mesh (i.e. the ground truss) could lead to complex models. On the other hand, simple 
models with direct load transfer patterns, long ties and no shear transfer mechanisms 
are less desirable for our purpose. Thus, graphic statics will be utilized to set up a post-
processing procedure on the initial outputs and possibly provide few useful STM 
options for a given problem. Most importantly, this research aims to contribute further 
to the generation of appropriate three-dimensional STMs. The created models could be 
used in education and practice or be integrated into the newly developed software by 
Muttoni et al. (2015) and Mata-Falcon et al. (2018). These tools develop realistic 
continuous stress fields, but still require one (or more) valid STM(s) as a starting point 
to input the reinforcement pattern. 



9 
 

 

Figure 6: Application to boundaries with irregular geometry: (top to bottom) 
boundary condition; optimized truss (form diagram); force diagram; 

discontinuous stress fields.  
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