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A B S T R A C T

This paper proposes a new design approach based on an iterative machine learning algorithm to speed up the
topological design exploration of compression-only shell structures with planar faces, considering both structural
performance and construction constraints. In this paper, we show that building neural networks allows one to
train a surrogate model to accelerate the structural performance assessment of various possible structural forms
without going through a significantly slower process of geometric form-finding. The geometric form-finding
methods of 3D graphic statics are used as the primary structural design tool to generate a single-layer, com-
pression-only shell with planar faces. Subdividing the force diagram and its polyhedral cells using various rules
results in a variety of topologically different compression-only structures with different load-bearing capacities
for the same boundary conditions. The solution space for all possible compression-only forms for a given
boundary condition is vast, which makes iterating through all forms to find the ideal solutions practically im-
possible. After training with an iterative active sampling method, the surrogate model can evaluate the input
data, including the subdivision rules, and predict the value of the structural performance and the construction
constraints of the planar faces within milliseconds. As a result, one can then evaluate the nonlinear relations
among all the subdivision rules and the chosen structural performance measures, and then, visualize the entire
solution space. Consequently, multiple solutions with customized thresholds of the evaluation criteria are found
that show the strength of this method of form-finding in generating design solutions. Besides, considering the
total training time of the neural network model, the proposed framework is still faster than a traditional opti-
mization method, such as the genetic algorithm that can find only the optimum values. This process will result in
interactive sampling methods in which the machine learning models assist the designer in choosing and con-
trolling different design strategies by providing real-time feedback on the effects of the selected parameters on
the design outputs.

1. Introduction

Designing structures by considering the internal force flow in their
members can significantly reduce the use of construction materials and
the related costs. Geometry-based structural design methods known as
Graphic statics (GS), represent a group of techniques that has been used
and developed for the past 150 years as an intuitive approach addres-
sing the economics of construction [12]. In 2D/3D Graphic statics the
equilibrium of the internal and external forces is represented by two
reciprocal diagrams that are topologically and geometrically related
[14,15,22,28,36]. The form diagram shows the geometry and the
boundary conditions of the structure, and the force diagram represents
the equilibrium of the force in the geometry of the form. The de-
pendency of these two diagrams allows us to generate and control the
properties of one diagram from the other. Moreover, a designer can

explicitly control and optimize the magnitude of the internal forces in
the structure by designing the geometry of the force diagram.

At the end of the nineteenth century, there was a shift from using
graphic-statics based structural design and analysis methods to nu-
merical methods to avoid the lengthy process of constructing the geo-
metric diagrams of forces. The recent advances in computing power,
however, have allowed the reemergence of the geometry-based struc-
tural design methods particularly in three dimensions after almost a
century. The complex geometric diagrams of forces can now be con-
structed in milliseconds using the current digital computation which
allows structural designers and architects to explore an unexplored
realm of efficient spatial structural forms in 3D
[4,10,11,17,30,31,34,35,39].

The methods of 3D graphic statics allow designers to create 3D fu-
nicular solutions for a given boundary conditions by designing and
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manipulating the force diagrams and the topology of the structural form
[2,3,9].

In the form-finding method based on reciprocal polyhedral dia-
grams of 3D graphic statics (3DGS), the force diagram consists of closed
polyhedral cells with planar faces. Each vertex v, edge e, face f, and cell

c of the form diagram Γ corresponds to a cell c†, face f†, edge e† and
vertex v† of the force diagram Γ†. The areas of each face f† represent the
magnitude of a force in the edge e of the form diagram (Fig. 1). Based
on this definition, the external faces of the force polyhedron represent
the external loads and reaction forces at the supports of the structural

Fig. 1. 2D versus 3D funicular solutions and their corresponding force diagrams [5].

Fig. 2. Design background – a single-layer funicular shell structure with six legs across 20 m.
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form. For instance, the applied load fi in the form diagram corresponds
to a face fi†. The force fi is perpendicular to the face fi† and the area of
the face represents the magnitude of the load in the form diagram.

Thus, as long as the force diagram consists of a set of closed poly-
hedrons, the corresponding form is in equilibrium. A designer can
subdivide the force polyhedrons to change the topology of the struc-
tural form and thus can explore a variety of different funicular struc-
tural forms for the very same boundary condition [19]. The generated
structures are always under equilibrium for the given boundary con-
dition. Moreover, the geometry of the compression-only structural
forms has planar faces that can be built using flat sheet materials – due
to the inherent planarity constraints of the reciprocal polyhedral dia-
grams. This is a great advantage of using 3DGS over any other struc-
tural form finding technique. While having infinite funicular solutions
for the same boundary condition might be ideal from design point of
view, having particular construction and performative constraints
seems quite necessary to choose multiple options from this infinite so-
lution space. We will provide the following design example to elaborate
on the necessity of having such control over the results.

1.1. Design background

Consider a single-layer, compression-only shell structure covering a
circular site with a diameter of 20 m as a design problem (Fig. 2). A 2D
hexagonal pattern including polygons −f1 7 can be used to construct the
3D polyhedral force diagram. The force diagram can be constructed as a
set of polyhedrons generated by extruding the polygons −f1 7 in 2D to a
center point downside (Fig. 2c, a). Fig. 2a and c illustrate the elevation
and plan of the force diagram, in which the applied loads are balanced
by the reaction forces at the supports of the structure from six sides.
Multiple geometries for the form diagram can be generated from the
force diagram with the constraint from the boundary conditions, where
the shell structure contains six legs with one center part (Fig. 2d). The
resulting shell covers the area with a diameter of 20 m (Fig. 2b).

Fig. 2e illustrates an example of a shell on which the planar panels
are supported by a structure with circular Cross sections. The form can
represent a glass shell structure supported by metal frames. One can
design various force diagrams by subdividing from the hexagonal faces
of the form, and derive a variety of compression-only forms. The
PolyFrame [27] plugin for Rhinoceros software [23] can be used as a
computational tool to generate form diagrams from a given force

diagram.

1.2. Problem statement

Among a variety of forms, the structural performance varies sig-
nificantly when constructing the structure with steel pipes. Based on the
conclusion by [19], the load-bearing capacity of funicular forms could
be improved if the force diagram is subdivided. That means the
minimum buckling capacity of all members in an ideal form should be
larger than that of the members in other forms (Fig. 3). Thus, the
weakest element in the form should have the ability to bear more loads.

Other than considering it from the point of the structural perfor-
mance, constructability is also essential in actual cases. We introduce an
additional evaluation criterion which does not accept faces with very
large or very small areas – the maximum fabrication area for this pro-
blem is 6.25 square meters and the minimum fabrication area is 0.09
square meters (Fig. 4). It would be very expensive for the project to
construct such faces, and we need to exclude the structural solutions
with such unacceptable faces. Therefore, a better solutions from con-
struction point of view are those with a smaller number of unacceptable
faces (ideally 0).

With these two evaluation criteria, any form that is generated by
this method can be evaluated. The conventional computational process
can be used in loops and evaluation criteria to generate a variety of
forms by applying different subdivision rules for the same boundary
condition (Fig. 5).

It usually takes around 40 s to generate a form using PolyFrame
which uses an iterative algorithm to generating a form diagram from a
given force diagram [4]. We can assume that there are only five sub-
division rules for the six side parts and seven subdivision rules for the
center part of the force diagram where each subdivision rule can take
five different numbers of the segments. In that case, the total number of
possible solutions will be 546,875 (56 × 7 × 5), resulting in a pro-
cessing time of 21,875,000 s, that is, 253 days of uninterrupted com-
puting. Running an exhaustive search among this enormous solution
space and finding all the ideal forms with maximum buckling capacities
and minimum numbers of unacceptable faces seems impossible within a
reasonable time limit. Even using genetic algorithm approach to find
the solution might take a long time and will result in single optimized
solutions.

Fig. 3. Buckling capacity based on Euler's critical load formula: the first criteria to evaluate the forms. E: modulus of elasticity; I: smallest area moment of inertia; K:
column effective length factor; L: length of the member.

Fig. 4. The number of unacceptable faces: the second criterion to evaluate the forms.
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Fig. 5. A conventional computational form finding flowchart.
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1.3. Machine learning

Recent advances in machine learning techniques offer promising
data-driven approaches to ascertain the nonlinear and high-dimen-
sional relations between forces and the structural performance of the
generated forms [18,21].

Related research on the application of machine learning in struc-
tural design includes applying a general regression framework to the
prediction of 3D form data of a bent planar surface [16]; quantifying
and optimizing the aesthetics factors in structural design using artificial
neural networks [39]; generating structural forms based on the machine
learning of the user-provided evaluation data [33]; machine learning
the results in the finite element analysis (FEA) to optimize the com-
putation process [6]; and generating small-scale truss structures based
on the machine learning of the structural performance of the building
units [38]. Previous studies have focused on the generation of target
structural solutions without the purpose of exploring the entire solution
space.

In addition, machine learning has performed magnificently in the

automation of the construction process. Related research includes
capturing real-time images and training a neural network to look for the
defects in manufacturing [8]; training neural networks to simulate the
process of human-made woodworks [13]; applying image-based neural
networks to identify the location of the bamboo nodes and guide the
construction of the bamboo structure [37]; training a path-planning
machine to generate the moving trajectory of the robotic arm while
avoiding obstacles [29]; quantitatively evaluating the safety in the
construction process using machine learning [32]; detecting construc-
tion workers with motion, shape, and color features using machine
learning [26]; and enhancing the decision making in contractor pre-
qualification [20]. These topics are related to the fabrication process
during construction, but they do not involve examining the construct-
ability from the perspective of the design before construction.

1.4. Objectives

This research aims to propose a machine learning assisted method
that accelerates the time-consuming form finding process of 3D graphic

Fig. 6. One example of subdividing the force diagram and its related compression-only shell.

Fig. 7. Different subdivision rules for the side units and the center unit.

Fig. 8. Different subdivision rules for the center unit.
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statics, thus making it possible to explore a vast solution space without
going through the entire geometry generation process. This approach
should be able to find all the ideal forms with higher buckling capacities
and smaller numbers of unacceptable faces. We propose to address this
problem by developing a surrogate model for the form finding process.
A surrogate model is a reduced model of a slower computational pro-
cess (e.g., a physics-based simulation) and is usually developed to learn
the nonlinear relationships between the important input and output
values of the original model without the need to entirely run the slower

model. Surrogate or meta-models are very well-known concepts in
fields such as mechanical system design or aerodynamic systems [7].
We expect that the whole process for one prediction should be com-
pleted within milliseconds. Therefore, exploring all possible solutions
and filtering the ideal results should take place under a strict time
constraint using the surrogate model.

With this surrogate model, the design performance of the forms
using different subdivision rules can be analyzed, and the solution space
can be visualized. The conventional time-consuming form-finding
process can be replaced by the faster machine learning assisted process
so that ideal forms can be found among the whole solution space within
a reasonable time limit.

2. Methodology

The first step in developing a surrogate model for our multi-objec-
tive design criteria is to define the variables related to the form finding
process.

Fig. 9. Different forms generated from different subdivided force diagrams.

Table 1
5-Fold cross-validation of neural networks with different numbers of layers.

Network
structure

Median accuracy for the
buckling capacity (%)

Median accuracy for the number
of unacceptable faces (%)

2-Layer ANN 93.4 93.6
3-Layer ANN 95.4 95.8
4-Layer ANN 97.0 97.4
5-Layer ANN 98.2 98.8
6-Layer ANN 97.2 97.9
7-Layer ANN 96.4 96.6
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2.1. Variables defining the force and form diagrams

In the proposed form-finding process using 3D graphic statics, there
are three important inputs: the boundary conditions of the force diagram,
the subdivision rules of the force diagram, and the geometric constraints of
the form diagram [19].

The first input describes the fixed boundary condition of the force
diagram, which also defines the external forces. Generally speaking, the
boundary condition can be any closed polyhedron representing various
states of external forces. However, in this research, the boundary con-
dition the top face is large hexagon that is divided into seven smaller
faces (Fig. 6a). By extruding the vertices of the 2D pattern to a center
point similar to Fig. 2, the 3D boundary polyhedron can be constructed
(Fig. 6c). This force polyhedron corresponds to a single shell structure
for the purpose of this research. The external faces of the force poly-
hedron correspond to the applied loads and the reaction forces in a
shell. Thus, the geometry of the initial force diagram with no subdivi-
sion includes seven external loads from the top and six reaction forces
on the periphery of the shell. Each internal polyhedral cell represents
the equilibrium of a node, and each face is perpendicular to a member
in the form. Once subdivided, each segment is divided into multiple
polygons that represent applied loads for the geometry of the shell.

The second input, the subdivision rules, describes the strategies by
which a given original force diagram is subdivided into several cells,
resulting in a force diagram with more cells. The subdivision in this
research is based on edges. Each edge in the unit face of the original
force diagram is subdivided into several segments; the start and end
points of each segment, as well as the center points of each face, will
then together become the new subdivided faces in the unit of the force
diagram as a 2D pattern (Fig. 6b). Finally, by extruding the edges of the
2D pattern to a center point below the surface, 3D faces are generated
(Fig. 6c); the faces together become the force diagram.

For each unit, five types of subdivision rules for the side unit face
( −f f1 6) (Fig. 7) and seven types of subdivision rules for the center unit
face ( f7) are developed (Fig. 8). Each subdivision rule represents a
unique technique to subdivide the unit face, and each edge in the unit
face can be subdivided into several segments with different settings of
the subdivision count m. For example, rule a-3 for the side unit face first
subdivides the face with the connecting lines between a center point
and the four vertices; the center points for the four subdivided faces will
then be connected by the four subdivided points (including the start
and the end points) in each segment of the faces, since the subdivision
count m is 3 in this case. All segments should be subdivided according

Fig. 10. Machine learning assisted iterative training method.

Table 2
Median accuracy of the neural networks in different training loops (buckling
capacity (%)/the number of unacceptable faces (%)).

Random data Small results Equal results Large results

Loop 1 87.4/95.3 85.3/97.9 87.5/96.4 27.1/10.9
Loop 2 94.2/97.6 95.8/98.7 93.9/97.4 42.2/91.5
Loop 3 96.1/97.8 96.1/99.3 95.1/97.9 93.9/97.9
Loop 4 97.0/98.2 96.3/98.6 96.7/98.4 99.7/96.7
Loop 5 97.0/98.6 95.9/99.4 95.1/98.2 98.5/99.3

Table 3
The number of instances and required time of the neural networks in different
training loops and the genetic algorithm.

Instances amount Required time Best found? Surrogate?

Loop 1 175 2.03 h No Yes
Loop 2 475 5.33 h No Yes
Loop 3 775 8.63 h Yes Yes
Loop 4 1075 11.97 h Yes Yes
Loop 5 1375 15.31 h Yes Yes
GA / 9.56 h Yes No
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to the same m value to keep the edges touching each other, thus en-
suring that the force diagram is correct as a closed polyhedron.

Therefore, in this subdivision system, the variables are the sub-
division rules that are applied to the seven faces and the numbers of the
segments into which the edges are subdivided. A series of eight num-
bers, for example 12345432, indicates the subdivision rules for the
eight unit faces of the initial force polyhedron ( f1:1; f2:2; f3:3; f4:4; f5 :5;
f6:4; f7:3) and the segment counts (m:2).

The final input is the boundary constraint for the form which is
introduced as geometric constraints of nodes in the construction process
of the form based on the geometric algorithm described by Akbarzadeh
[1]. In this process, the position of each node is repeatedly updated to
minimize the angle between the current member and the normal vector
of the corresponding face in the force diagram while keeping the whole

geometry inside the boundary constraint of a circle with a diameter of
20 m (Fig. 6d). This geometric operation ensures that the final form
precisely matches its corresponding force diagram and touches the ideal
boundary of the design space.

Thus, based on the fixed force boundary condition and the form
boundary constraint as well as the different subdivision rules for each
edge as variables, a series of funicular, topologically different, single-
shell structural forms can be generated (Fig. 9). PolyFrame, a plug-in
tool in Rhino, is used for the geometric computations [27].

2.2. Neural networks

The goal of this research is to evaluate the funicular forms generated
from their corresponding force diagram based on their Euler buckling

Fig. 11. Form-finding results with the largest buckling capacity (left) and smallest number of unacceptable faces (right) in each training loop. The neural network
gradually finds better solutions.

Table 4
Parameter table for Fig. 11 left.

f1 f2 f3 f4 f5 f6 f7 m fb × E3(kN)

1-a 2 4 5 2 5 3 3 4 8.30
1-b 2 4 4 2 5 3 3 4 8.05
1-c 4 4 5 1 2 4 1 1 15.38
1-d 1 5 3 2 5 3 7 2 13.94
1-e 5 4 5 1 5 3 7 1 15.52
2-a 3 3 4 5 1 5 5 1 15.54
2-b 3 2 5 5 1 5 5 1 16.32
2-c 1 3 3 1 1 1 5 1 25.19
2-d 2 2 3 2 1 5 2 2 15.51
2-e 4 3 5 5 1 5 5 1 16.07
3-a 5 5 5 5 5 5 7 5 40.09
3-b 5 5 5 5 5 5 7 4 30.28
3-c 1 1 1 1 1 1 1 2 40.02
3-d 5 5 5 5 5 5 2 4 41.98
3-e 5 5 5 1 5 5 2 4 37.54
4-a 5 5 5 5 5 5 2 4 41.98
4-b 5 5 5 5 5 5 1 4 41.79
4-c 5 5 5 5 5 5 7 5 40.09
4-d 1 1 1 1 1 1 1 2 40.02
4-e 5 5 5 5 5 5 1 3 42.68
5-a 5 5 5 5 5 5 2 3 42.80
5-b 5 5 5 5 5 5 1 3 42.68
5-c 5 5 5 5 5 5 2 4 41.98
5-d 5 5 5 5 5 5 1 4 41.79
5-e 5 5 5 5 5 5 7 5 40.99

Table 5
Parameter table for Fig. 11 right.

f1 f2 f3 f4 f5 f6 f7 m n

1-f 5 4 5 2 3 1 4 2 3
1-g 5 4 1 3 5 1 7 3 7
1-h 1 4 4 2 4 1 7 3 0
1-i 5 1 3 2 4 1 4 2 3
1-j 1 4 5 2 3 1 4 2 2
2-f 5 5 5 5 5 1 7 2 0
2-g 5 1 3 5 5 2 7 2 5
2-h 4 2 2 4 4 1 4 2 0
2-i 5 2 3 2 5 2 7 2 3
2-j 4 2 4 2 1 1 6 1 6
3-f 1 3 1 2 1 4 6 2 1
3-g 1 5 1 2 1 1 7 2 3
3-h 2 1 1 2 1 1 7 2 0
3-i 1 1 1 2 1 3 3 2 1
3-j 3 1 5 4 2 4 6 2 3
4-f 1 4 4 1 2 1 6 2 1
4-g 4 5 5 3 2 2 6 2 3
4-h 1 4 1 1 2 1 6 2 2
4-i 4 3 4 1 3 5 6 2 2
4-j 1 1 4 1 2 1 6 2 2
5-f 1 2 2 4 4 1 3 2 1
5-g 1 1 2 4 2 4 7 2 1
5-h 1 4 2 5 1 2 5 2 0
5-i 1 2 1 4 4 1 3 2 1
5-j 1 2 2 3 4 1 5 2 1
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performance and the size of their planar panels. Thus, a clear trans-
formation of the form into understandable digital data for the computer
is needed. To improve comparability with other forms, the structural
data should represent the features of the form and be unique.

Initially, the subdivision rules can be set as eight input neurons with
values of 1, 2, 3, 4, 5, 6, or 7 to indicate the subdivision rules for each
face and how many segments into which each edge should be sub-
divided. However, since the values should be discontinuous as catego-
rical variables, the one-hot encoding should be done to the input neu-
rons. Thus, five or seven input neurons with binary values of either 0 or
1 are used to replace the single neuron of 1 to 5 (side subdivision and
the segment count) or 1 to 7 (center subdivision). For example, a set of
five neurons with the values of 0, 0, 1, 0, and 0 means the face is
subdivided using the third rule. In this situation, only one neuron can
have a value of 1, and the other neurons should all be 0. Thus, 42
(5 + 5 + 5 + 5 + 5 + 5 + 7 + 5) neurons in total are used as the
input layer structure for the neural network.

For the output data structure, a simple method is to directly use the
values of the buckling capacity and the number of unacceptable faces as
the two output neurons. However, we processed the normalized data
collected as a real number between 0 and 1. This standardization en-
sures that the magnitude of all the data, including the input and the
output, remains in the same range. Thus, the activation function, which
describes the formula to map between the input data and the output
data, is set using the Sigmoid function (Eq. (1)). In this formula, y
represents the predicted value, x represents the input value, w, and b
are the weight and bias parameters, which the network will determine
during training. In addition, the loss function is a mean squared error
(MSE) function (Eq. (2)) by default.

 ⎜ ⎟= ⎛
⎝

∗ + ⎞
⎠

=
+ − ∗ +y Sigmoid w x b

e
1

1 w x b( ) (1)

 ∑= −
=

Loss y y
n

y y( , ) 1 ( )
i

n

i i
1

2

(2)

Finally, the number of hidden layers in the neural network should
be defined. This depends on the complexity of the problem. A larger
network with more hidden layers does not guarantee better perfor-
mance. Thus, a 5-fold cross-validation test with 1500 randomly gen-
erated instances, which is commonly used to test the performance of a
machine learning algorithm, is implemented with Tensorflow and given
to the neural networks with different numbers of layers. To simplify the
loss function to be better understood, the accuracy function (Eq. (3)) is
used to evaluate the accuracy of the outputs.

 = − ∣ − ∣Accuracy y y y y( , ) 1 (3)

To test the effect of layer sizes in the neural network on the overall
performance of the surrogate model, we performed the validation test.
Table 1 presents the median accuracy of different neural networks in
the 5-fold cross-validation test, using a dataset of 1500 randomly gen-
erated instances. It can be seen that the artificial neural network with
five layers has the highest accuracy compared to the other neural net-
works. Thus, the neural network with five layers is chosen as the final
setting.

2.3. Iterative training and targeted sampling

With the data structure, the activation and loss functions, and the
neural network settings described above, after training, the neural
network model should predict the two values within milliseconds, given

Fig. 12. Form-finding results: examples of small (sample 5-f-a)/middle (sample 5-f-b)/large (sample 5-f-c) buckling capacity (figures in the middle).
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a specific subdivision rule.
Thus, to test its accuracy in different domains to see whether the

trained model can correctly predict the buckling capacity and the
number of unacceptable faces among different ranges of the solution
space, all possible subdivision rules were fed to the trained neural
network, and the predicted values were then sorted. According to the
sorted values, 300 samples with the smallest/equally distributed/lar-
gest buckling capacity/number of unacceptable faces were extracted
and sent back to the geometric process to verify its accuracy.

However, according to the geometric results, the accuracy of the
three sets of 100 subdivision rules are very unsatisfying: They are only
79.6%, 71.6%, and 20.4% for the buckling capacity and 98.3%, 59.2%,
and 4.2% for the number of unacceptable faces, much smaller than the
expected accuracy. Thus, the current neural network model performs
well in a random domain but poorly in the domain of extreme values.
This phenomenon is caused by missing key instances in the training
data. Since all instances were generated randomly, the model over-fit
specific values according to the training set. Thus, it lost the ability to
predict extreme values that were not included in the training set. We
can conclude that targeted sampling (active sampling) is needed rather

than random sampling.
To solve this problem, an iterative training method is proposed,

adding the ground truth values of the selected subdivision rules into the
training dataset in each training loop (Fig. 10). First, the initial training
data containing 175 instances are used to train the neural network
model in the first loop. The initial subdivision rules are generated by
changing one subdivision rule in the ruleset while keeping the other
seven rules the same. For example, rule “A = {1,1,1,1,1,1,1,2}” and
rule “B = {2,2,2,2,2,2,2,2}” are contained in the first training set. The
reason behind setting up the initial input values in this way is that it
generates training samples that have equally separated subdivision
rules in the solution space; thus, the output values should have a better
chance of also being equally distributed. The learning of these instances
should help the neural network to obtain an overview of knowledge of
the whole solution space.

Based on the trained model in the first training loop, all possible
series of subdivision rules are predicted using the surrogate model, and
the output values are sorted. Next, 150 rules with the smallest/equally
distributed/largest buckling capacity values and 150 rules with the
smallest/equally distributed/largest number of unacceptable faces are
selected as the instances waiting for the geometric verification. The
reason behind selecting these 300 rules is that the 200 smallest and
largest values boost the information in the domain of the extreme value
area, and the 100 equally distributed values add necessary information
for the overall prediction. Thus, after the feedback from the geometric
operation has been received, the ground truth values and the selected
subdivision rules are added to the training dataset, and a new neural
network model in the next loop will be trained.

After the iterative method had been executed five times, the accu-
racy of the neural network model reached 97% and 98.6% in the ran-
domly generated validation set. The accuracy of the smallest/equally

Fig. 13. Form-finding results: examples of small (sample 5-f-d)/middle (sample 5-f-e)/large (sample 5-f-f) number of unacceptable faces (figures in the middle).

Table 6
Parameter table for Figs. 12 and 13.

f1 f2 f3 f4 f5 f6 f7 m fb × E3(kN) n

5-f-a 1 4 4 2 3 2 3 5 6.71 28
5-f-b 4 3 2 5 4 3 1 3 12.93 9
5-f-c 5 5 5 5 5 5 2 3 42.80 6
5-f-d 1 4 2 3 1 2 5 2 12.71 0
5-f-e 1 5 1 2 3 3 7 4 10.45 9
5-f-f 5 2 5 4 5 3 2 5 12.71 171
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distributed/largest results is 95.9%/99.2%, 95.1%/98.2%, and 98.5%/
99.3%, significantly higher than in the previous model (i.e., with
random sampling). The whole process, including geometric operations
and neural networks training and testing, took around 15.31 h, which
falls within an acceptable time limit. Using the trained model, the
prediction of the two values from a single set of the given subdivision
rules takes less than 1 millisecond to complete, while an exhaustive
search for all solutions would take around 6000 h, and the genetic al-
gorithm for one single solution would take around 10 h.

3. Results

3.1. Model training

Based on the neural network settings and the iterative training
method described above, neural network models in different loops were
built and trained. Table 2 presents the testing accuracy in each training
loop. The sample solutions were iteratively updated and added to the
training dataset in each loop. The randomly generated 300 instances
were used for the random testing, while the 300 verified instances were
generated as the testing data for the results in the domains.

It is clear that in the first training loop, the accuracy was lower than
expected. The initial data of the 175 instances were too small for the
model to learn; this could have easily caused the over-fitting problem.
As the program looped, the accuracy in loop 2 increased. In loops 3, 4,
and 5, the looping did not help much in increasing the accuracy of
predicting randomly selected instances, but the prediction of extreme
values was improved. The models in loop 5 reached the ideal level of
accuracy for both the randomly testing data and the selected extreme
data.

Moreover, Table 3 presents the required time for each training loop,
including generating the training instances, and the required time of the
optimization program using the genetic algorithm. In loops 3, 4, and 5,
the best solutions with the largest buckling capacity and the smallest
number of unacceptable faces are found in the predicted 100 extreme
values. The required time for loop 3 is 8.63 h, while the required time
for a genetic algorithm to find those two solutions is 9.56 h. The neural
network is faster than the genetic algorithm in reaching the same level
of effect, and it is a surrogate model that can predict all values, while
the genetic algorithm only finds the single best values.

Also, Fig. 11 depicts the forms of the geometries found with extreme
values in each loop. As the training loop proceeds, the predicted max-
imum buckling capacity value keeps increasing, while the predicted
minimum number of unacceptable faces value keeps decreasing. For
example, the buckling capacity values for samples 1-a, 2-a, 3-a, 4-a, and
5-a are 8.3 E3(kN), 15.54 E3(kN), 40.09 E3(kN), 41.98 E3(kN), and 42.8
E3(kN), respectively. Furthermore, the number of unacceptable faces
values for samples 1-g, 2-g, 3-g, 4-g, and 5-g are 7, 5, 3, 3, and 1, re-
spectively. That means the neural network gradually finds better

Fig. 14. Form finding: matrix of results with different ranges of the buckling capacity and the number of unacceptable faces.

Table 7
Parameter table for Fig. 14.

f1 f2 f3 f4 f5 f6 f7 m fb × E3(kN) n

1-a 4 4 2 1 4 5 2 5 11.89 133
1-b 4 4 3 5 5 3 2 5 12.38 146
1-c 5 3 4 5 3 5 2 5 12.46 163
1-d 3 3 2 5 3 1 2 5 12.59 131
1-e 4 4 3 5 5 5 2 5 12.78 149
2-a 2 5 4 4 2 1 1 5 10.70 99
2-b 4 4 2 1 4 5 2 5 11.70 114
2-c 5 3 3 1 2 5 1 5 11.90 108
2-d 1 1 1 1 1 1 1 5 22.97 84
2-e 1 1 1 1 1 1 2 5 23.55 90
3-a 4 4 3 5 5 5 3 5 7.20 24
3-b 4 5 2 5 5 4 5 5 7.34 38
3-c 4 5 2 5 5 3 6 5 7.44 37
3-d 5 3 4 4 1 2 2 4 11.35 30
3-e 2 2 4 5 3 1 1 1 14.68 9
4-a 3 2 3 5 3 1 3 4 8.96 9
4-b 5 3 3 4 3 3 2 1 13.99 10
4-c 3 2 2 1 1 5 2 2 14.97 2
4-d 3 2 2 1 1 5 4 1 15.05 7
4-e 3 2 2 1 2 3 7 1 26.87 6
5-a 4 5 1 4 4 4 7 2 12.55 2
5-b 4 2 1 2 4 5 5 2 12.94 1
5-c 1 1 1 1 1 1 3 2 33.39 1
5-d 1 1 1 1 1 1 2 3 36.39 0
5-e 1 1 1 1 1 1 2 2 38.75 0
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solutions with a larger buckling capacity and a smaller number of un-
acceptable faces (Table 4).

In loop 3, the global maximum buckling capacity solution “A =
{5,5,5,5,5,5,2,3}” first appears in the top 50 samples, and in loop 5, it
becomes the best prediction as sample 5-a. For the number of un-
acceptable faces, even in loop 1, the model finds at least one solution
with 0 unacceptable faces, for example, sample 1-h, and the overall
tendency of the predicted values runs toward 0 as the training proceeds.

That means the training was successful, and the final model in loop 5
can be used as a surrogate model for the further form-finding process.
Therefore, we can conclude that the trained model has very high ac-
curacy in the whole solution space. This surrogate model is trustworthy
for the predictions (Table 5).

3.2. Form finding

Next, using the trained model, the form-finding process can pro-
ceed. In this process, given all the combinations of the subdivision rules,
the trained surrogate model can quickly estimate the buckling capacity
and the number of unacceptable faces, almost in real time.

First, to test the ability of the trained neural network in the form-
finding process, examples with a small/middle/large buckling capacity
and number of unacceptable faces are found by the neural network
model. Fig. 12 presents three examples for buckling capacity, while
Fig. 13 presents three examples for the number of unacceptable faces.
The trained network successfully predicts the two output values and
finds the cases with a specific range of buckling capacity and number of
unacceptable faces.

For example, according to Table 6, the buckling capacity for sample
5-f-a is 6.71 E3(kN), much smaller than the buckling capacity of 42.8
for sample 5-f-c E3(kN). Thus, if the user wants to find a solution with
low buckling capacity, sample 5-f-a will be recommended. In addition,
the number of unacceptable faces for sample 5-f-f is 171, much larger
than that for sample 5-f-d of 0. Similarly, if the user wants a form that
contains a large number of unacceptable faces for comparison, sample
5-f-f will be recommended.

Fig. 14 presents the resulting matrix of the form-finding process,
where the vertical axis presents the examples with different ranges of

Fig. 15. Form finding: larger buckling capacity + smaller number of unacceptable faces (ideally 0).

Table 8
Parameter table for Fig. 15.

f1 f2 f3 f4 f5 f6 f7 m fb × E3(kN) n

5-f-g 1 1 1 1 1 1 2 2 38.75 0
5-f-h 1 1 1 1 1 1 6 2 35.48 0
5-f-i 1 1 1 1 1 1 7 2 35.45 0

Fig. 16. Data distribution of the buckling capacity (left) and the number of
unacceptable faces (right).
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the buckling capacity and the horizontal axis presents the examples
with different ranges of the number of unacceptable faces. For example,
sample 1-a shows a form with a small buckling capacity and a large
number of unacceptable faces, which can be regarded as one of the
worst results, while sample 5-e shows one of the best results, a form
with a large buckling capacity and a small number of unacceptable
faces. This resulting matrix demonstrates that the form-finding method
meets the requirement for the user to be able to find the solutions with
any specific range of buckling capacity and number of unacceptable
faces (Table 7).

However, in our design case, ideally, the number of unacceptable
faces should be 0 so that the form can be built in reality. Therefore,
based on the output values, we set the maximum acceptable number of
unacceptable faces as 0 while sorting all filtered results based on the
buckling capacity. Fig. 15 presents the top three results the neural
network finds. Their buckling capacity values are more significant than
those of other forms, and they are constructive in reality without any
unacceptable faces (Table 8).

Therefore, based on the returning results, the neural network suc-
cessfully finds multiple solutions within the expected time limit. By
changing the thresholds of the two output values, designers can be
presented with different recommended solutions and can thus obtain
the ideal forms with a specific buckling capacity and number of un-
acceptable faces.

3.3. Data analysis

With the trained model, the entire solution space can be visualized
in a matter of milliseconds. Fig. 16 illustrates the data distribution of
the buckling capacity and the number of unacceptable faces. It can be

inferred that among all the solutions, the buckling capacity has a dis-
tribution close to a normal distribution, as the cumulative distribution
is closer to a 45-degree line, while most of the solutions have several
unacceptable faces larger than 0. Since the number of unacceptable
faces is caused by both faces that are too large and faces that are too
small, subdividing the force diagrams and generating more members in
the forms does not guarantee a smaller number of unacceptable faces,
because it subdivides the large faces while producing small faces. Thus,
a further subdivision is not always suitable for all cases.

To obtain a closer look into the solution space, if we are now in-
terested in analyzing the relationships between the subdivision rules on
each face and the final two performance measures, we have a 10-di-
mensional space (six for subdivision rules of the side units, one for
subdivision rules of the center units, one for the subdivision count, one
for the buckling capacity, and one for the number of unacceptable
faces). The dataset in the 10-dimensional space is then transformed to a
2-dimensional space and plotted in Fig. 17 using self-organizing maps
(implemented in Python [24]), a powerful nonlinear manifold learning
and dimensionality reduction method that can visualize a high-di-
mensional space via a lower-dimensional space (usually two dimen-
sions) [25].

According to the result, first, the inverse relation between buckling
capacity and the “rule in initial subdivision” (Fig. 17i and h) can be
found. That means subdividing the initial force diagram with more
segments in the majority of state-space decreases. However, some in-
stances still have a larger buckling capacity with a larger subdivision
count, for example, the upper right corner in Fig. 17i. Secondly, the
importance of “rule in initial face 7” (Fig. 17g) in comparison to the
side units (Fig. 17a to f) can be observed. The distribution pattern of
“rule in initial face 1 to 6” is more random than the pattern of “rule in

Fig. 17. The nonlinear effects of different design variables (i.e., subdivision rules) on the final structural permanence measures, using self-organizing maps.

Fig. 18. Asymmetric condition: user-defined original force units and form constraint.
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initial face 7,” which indicates that the subdivision rule for the center
unit plays a more important role in deciding the structure and perfor-
mance and the constructability. Furthermore, the interplay between
some of the side units indicates exciting relations. For example, “rules
in initial face 1, 3, and 5” (Fig. 17a, c, and e) are organized with ne-
gative local correlations (i.e., with opposite colors) of one another,
while “rule in initial face 2, 4, and 6” (Fig. 17b, d, and f) have locally
negative co-relations. This phenomenon demonstrates that the results
are usually similar when different subdivision rules are applied to the
crossing faces (for example, 1, 3, and 5 or 2, 4, and 6).

3.4. User-defined force boundary and form constraint

In addition to the fixed force boundary and form constraint de-
scribed above, the neural network can learn and predict the geometric
process and results with customized force boundaries and form con-
straints. The same procedure can be applied to the cases to build an-
other surrogate model with different variables of the subdivision rules.

Fig. 18 introduces an example of the form generation under a user-
defined asymmetric force boundary and form constraint. The initial
force pattern contains six side units and two center units (Fig. 18a),
which is different from the previous case. Moreover, each face can be
geometrically different but follow the same subdivision rules of the five
side subdivision rules and the seven center subdivision rules. The form
constraint (Fig. 18d) can be any closed planar curve that the legs of the

form are forced to touch during the generation process.
With all the settings above, the program will automatically load

these prerequisites and the subdivision rules and generate the forms.
Fig. 19 presents examples of the force diagrams and the corresponding
forms. Since the force boundary and form constraint are asymmetric
and different from in the previous case, the structural performance and
the constructability are also very different.

When the same process of iteratively training another neural net-
work model and applying the final trained model in the form-finding
step is followed, forms with a specific range of buckling capacity and
number of unacceptable faces can also be found. Fig. 20 presents the
examples with small/middle/large buckling capacity, and Fig. 21 pre-
sents the examples with small/middle/large number of unacceptable
faces. Sample 6-f-a has a smaller buckling capacity than sample 6-f-c,
while sample 6-f-d has a smaller number of unacceptable faces than
sample 6-f-f. This result further demonstrates the ability of the neural
network to predict and find forms with any range of values (Table 9).

Moreover, with the setting of a threshold for the number of un-
acceptable faces, forms with larger buckling capacity are shown in
Fig. 22. However, in this case, the minimum number of unacceptable
faces is two, which means all solutions should have at least two faces
that exceed the range of constructive areas. Thus, with a threshold
value of two, samples 6-f-g, 6-f-h, and 6-f-i are found to have a larger
buckling capacity (Table 10).

Through the analysis of the solution space, in this case, a

Fig. 19. Asymmetric condition: example forms.

H. Zheng, et al. Automation in Construction 119 (2020) 103346

14



Fig. 20. Asymmetric condition: form-finding results: examples of small (sample 6-f-a)/middle (sample 6-f-b)/large (sample 6-f-c) buckling capacity.

Fig. 21. Asymmetric condition: form-finding results: examples of small (sample 6-f-d)/middle (sample 6-f-e)/large (sample 6-f-f) number of unacceptable faces.
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subdivision segment count of two would still produce a better result
that is more constructive and structurally stronger. Therefore, this
machine learning assisted evaluation method is adaptive for a variety of
situations in the form finding with single-shell structures.

4. Conclusion

3D graphic statics provides a robust geometry-based structural de-
sign and analysis method to generate funicular forms based on the
corresponding force diagrams. However, the large solution space
among a variety of sets of subdivision rules requires a tremendous
amount of computing power to find the form with the best structural
performance.

Meanwhile, machine learning methods (e.g., neural networks)
provide an alternative approach to building a surrogate model to pre-
dict the structural performance and the constructability of a given set of
subdivision rules. In this work, we demonstrate how, by using an
iterative process, a neural network model can be trained to accurately
predict the nonlinear relations between different subdivision rules (as

the input variables to the 3D graphic statics procedure) and two
structural and construction-related performance measures of the geo-
metric forms (the buckling capacity and the number of unacceptable
faces). After the surrogate model has been trained and given all the
possible subdivision rules, the two performance measures can be esti-
mated within seconds; this renders form finding in the whole solution
space practical. Analytical plots can be drawn using the predicted va-
lues, visualizing and analyzing the solution space.

Unlike in a traditional optimization process, such as using the ge-
netic algorithm, which only finds a set of (local) optimum solutions, in
the machine learning assisted evaluation and form-finding metho-
dology, the trained surrogate learns the relationship between the input
and the outputs, which enables the designer to interactively search the
entire solution space; thus, it provides more flexible methods for multi-
objective assessments of the solution space. By changing the thresholds
of the desired performance measure values, designers can easily be
presented with different recommended solutions and can thus obtain
the ideal solutions within specific ranges of the output values.

Therefore, in the future, the tendency toward design cooperation
between the human and the machine will become more evident. The
machine will assist the design process not only in simple repetitive work
but also in creative work by learning the design examples from the

Table 9
Parameter table for Figs. 20 and 21.

f1 f2 f3 f4 f5 f6 f7 f8 m fb × E3(kN) n

6-f-a 3 3 2 3 4 3 5 4 4 3.67 28
6-f-b 2 1 2 1 2 4 7 2 2 5.09 2
6-f-c 2 4 1 2 5 2 4 5 2 10.05 4
6-f-d 1 2 1 4 2 1 7 1 2 9.21 2
6-f-e 1 4 1 5 3 1 6 2 4 5.38 32
6-f-f 5 2 4 5 1 5 2 5 5 8.51 93

Fig. 22. Asymmetric condition: form finding: larger buckling capacity + smaller number of unacceptable faces (smallest 2).

Table 10
Parameter table for Fig. 22.

f1 f2 f3 f4 f5 f6 f7 f8 m fb × E3(kN) n

6-f-g 1 1 1 1 1 1 7 7 2 5.62 2
6-f-h 2 2 2 2 2 2 7 7 2 8.35 2
6-f-i 1 2 1 4 2 1 7 1 2 9.21 2
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human. The next step of this research is to extend the usage of machine
learning to provide a more general framework with different setups,
rules, boundaries, constraints, and topology, thus providing a real-time
feedback system to advise designers in their choice of design strategies.
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