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a b s t r a c t

This paper presents a three-dimensional extension of graphic statics using polyhedral form and force
diagrams for the design of compression-only and tension-only spatial structures with externally applied
loads. It explains the concept of 3D structural reciprocity based on Rankine’s original proposition for the
equilibrium of spatial frames. It provides a definition for polyhedral reciprocal form and force diagrams
that allows including external forces and discusses their geometrical and topological characteristics. This
paper furthermore provides a geometrical procedure for constructing a pair of reciprocal polyhedral
diagrams from a given polyhedron representing either the form or force diagram of a structural system.
Using this method, this paper furthermore suggests a design strategy for finding complex funicular
spatial forms in pure compression (or tension), based on the construction of force diagrams through the
aggregation of convex polyhedral cells. Finally, it discusses the effect of changes in the geometry of the
force diagram on the geometry of the form diagram and the distribution of forces in it.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Graphic statics is amethod for structural form finding that orig-
inates in the pre-digital era [1–4], but continues to be used and de-
veloped even today [5–7].

In graphic statics, the geometry and equilibrium of forces of a
structural system are represented by two reciprocal diagrams: the
form and the force diagram. Since the geometrical relationship be-
tween these diagrams provides explicit control over both form and
forces of a structure simultaneously, graphic statics is considered
as an intuitive technique for structural design, relevant to archi-
tects, engineers, researchers, and students.
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Despite its clear strengths and advantages, existing method of
graphic statics has some limitations. The most important one is
that a designer can only design three-dimensional structures by
reducing them to a combination of two-dimensional sub-systems,
for example, by using projections [8,9].

This paper therefore presents a three-dimensional version of
graphic statics using reciprocal polyhedral form and force dia-
grams for the design and analysis of spatial frames with externally
applied loads.

1.1. Previous work

Reciprocal diagrams are the basis of the conventional graphical
methods of structural form finding. This section provides a brief
summary of the use of reciprocal diagrams and other geometric
techniques in structural design.

2D reciprocal diagrams
The concept of investigating static equilibrium through geo-

metric constructions involving polygons of forces first appeared
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in the drawings by Varignon [1]. Rankine used this concept in The-
ory of Equilibrium of Polygonal Frames and applied it to the design
of framed structures [10]. However, the first person who formal-
ized the reciprocal relationship between form and force diagrams
was Maxwell [3]. He used the concept of duality developed by
Möbius [11], and showed that 2D reciprocal diagrams must not
only be topologically dual of each other, but each line in one di-
agram should be perpendicular to the corresponding line in the
other diagram. These 2D diagrams became the basis for 2D graphic
statics [2,4,12].

Unloaded, pre-stressed, reciprocal surface structures
Reciprocal diagrams on the local coordinates of a surface can

also be used to geometrically calculate the states of stress in sur-
faces which are only loaded in their boundaries. If two unloaded
pre-stressed surfaces are reciprocal, the equilibrium of a node
on one surface is ensured by a closed polygon of forces on the
other [13].

Surface structures and parallel loading
The problem of finding funicular structural forms in three di-

mensions using geometric approaches has received a lot of at-
tention in different fields of research. Thrust Network Analysis
developed by Block and Ochsendorf [14] is a graphic statics-based
method for finding compression-only funicular network of forces
for given loads and boundary conditions. By requiring all loads to
be vertical, it provides explicit control over the 3D shape of a fu-
nicular network in compression through projected form and force
diagrams describing horizontal equilibrium in the system. As a
consequence, TNA produces results in the form of heightfields over
a two-dimensional diagram of forces. This method has been inves-
tigated further by Vouga et al. [15], Liu et al. [16], de Goes et al. [17],
Panozzo et al. [18] related to the design and construction of self-
supporting surfaces. The fundamental principle of these methods
is to allow separatinghorizontal and vertical equilibriumby requir-
ing all loads to be vertical, or at least parallel, and perpendicular to
the planes of projection of the form and force diagrams. Therefore,
these methods cannot easily account for non-parallel applied load
cases.

Extensions of graphic statics to 3D
Since the 19th century, severalmethods have beendeveloped to

extend graphic statics to three dimensions. The works of Föppl [8],
who used projective geometry to analyze three-dimensional
trusses, and Schrems and Kotnik [19], who suggested a force-pair
technique, are examples of such efforts. Thesemethods are limited
to the analysis of determinate system of forces and fail to preserve
the intuitive aspect of graphic statics.

3D reciprocal diagrams
Rankine [20] suggested that the equilibrium of polyhedral

frames can be described using a reciprocal polyhedron of forces
(see Section 2). In the same year, and in response to Rankine’s
proposition, Maxwell [3] provided a geometric procedure to con-
struct 3D reciprocal diagrams for a specific case, which is only
suitable for self-stressed, structurally determinate systems (see
Appendix), and pointed out the complexity of the construction for
more general cases. The problem was never investigated further
until Akbarzadeh et al. [21] recently visualized and thereby clari-
fied the contents of Rankine’s dense proposition.

Simplicial structures

The geometrical relationships between the reciprocal figures
described by Rankine are very similar to the geometrical rela-
tionships in orthogonal dual structures in Poincaré duality theo-
rem [22]. However, Poincaré duality is defined for n-manifold tri-
angulated space, whereas the reciprocal diagrams discussed in this
paper are not limited to triangulated/tetrahedralized space. There
is a large body of research in the field of computer graphics, math-
ematics, and engineering that emphasizes the use of triangulated
dual structures and their constructing algorithms. For further read-
ings on these topics, we refer readers to de Goes et al. [23] and
Mullen et al. [24].

1.2. Objectives and contributions

The ultimate goal of our research is to create a fully three-
dimensional graphical method for the design of spatial structural
systems with non-parallel applied external loads that preserves
the intuitive and explicit control over both form and forces
provided by (traditional) two-dimensional graphic statics through
geometrically linked diagrams. In this paper, as a first step, we
introduce a subset of this method for designing spatial frames
in pure compression (or tension). This method assumes external
loads are applied only on the boundaries of the form diagram. The
selfweight of the frames is thus ignored.

In Section 2, we briefly discuss Rankine’s original proposition,
and provide a short proof.

In Section 3, we define polyhedral form and force diagrams, and
describe the topological and geometrical requirements of their re-
ciprocal relationship in a structural context. We furthermore dis-
cuss the additional geometric requirements related to the intended
compression-only or tension-only nature of the structural systems
investigated in this paper.

In Section 4, we discuss a procedure for constructing a pair of
convex, reciprocal polyhedral diagrams from a given polyhedron
with convex cells and planar faces.

In Section 5, we use this procedure to find spatial frames in
pure compression by starting from a given force distribution rep-
resented by a convex polyhedral force diagram. We furthermore
discuss how the force distribution and the geometry of the form
can change by exploiting the geometric degrees of freedom of the
force diagram.

2. Principle of equilibrium of polyhedral frames

Rankine [20], in Principle of equilibrium of polyhedral frames,
stated that forces acting on a point, perpendicular and proportional
to the areas of the faces of a closed polyhedron, are in equilibrium.
This proposition contains only two short paragraphs that we
include here, as they appeared in the Philosophical Magazine:

‘‘If planes diverging from a point or line be drawn normal to the
lines of resistance of the bars of a polyhedral frame, then the
faces of a polyhedron whose edges lie in those diverging planes
(in such a manner that those faces, together with the diverging
planes which contain their edges, form a set of contiguous
diverging pyramids or wedges) will represent, and be normal
to, a system of forces which, being applied to the summits of
the polyhedral frame, will balance each other – each such force
being applied to the summit of meeting of the bars whose lines
of resistance are normal to the set of diverging planes that
enclose that face of the polyhedron of forces which represents
and is normal to the force in question. Also the areas of the
diverging planes will represent the stresses along the bars to
whose lines of resistance they are respectively normal.

It is obvious that the polyhedron of forces and the polyhedral
frame are reciprocally related as follows: their numbers of
edges are equal, and their corresponding pairs of edges
perpendicular to each other; and the number of faces in each
polyhedron is equal to the number of summits in the other.’’
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Fig. 1. Two polyhedral frames with their reciprocal, polyhedral force diagrams: (a)
the intersection of planes perpendicular to bars diverging from a point (top), or a
line (bottom), form an open polyhedron; (b) the plane normal to the direction of an
additional applied force closes the polyhedron and creates equilibrium; and (c) the
pipe diagram represents the magnitude of force, each calculated from the area of
the corresponding (perpendicular) face in the force diagram.

Fig. 1 depicts the application of Rankine’s theory to two poly-
hedral frames, consisting of three and four bars respectively [21].
Fig. 1(a) shows the planes that are perpendicular to the bars of the
frames, and diverge from a point (top) or line (bottom). In both
cases, the planes form an open polyhedron. A face perpendicular to
an additional force (for example, an applied load) closes the poly-
hedron (Fig. 1(b)) and completes the force equilibrium for the node.
The areas of the faces of the closed polyhedron are proportional
to the magnitudes of the forces in the corresponding bars of the
frame. Each choice of closing face thus results in a different distri-
bution of forces in the frame (Fig. 1(c)).

To the knowledge of the authors, Rankine never proved his
theory. Therefore, we provide here a short proof based on the
divergence theorem [25,26].

Let P be a closed polyhedron in R3 with enclosing faces fi and
volume V , and v⃗ an arbitrary, constant vector field in R3. Each face,
furthermore, has area Ai and normal vector n⃗i. According to the
divergence theorem, the total outward flux of v⃗ through the closed
surface of the polyhedron is equal to the divergence of v⃗ over the
enclosed region, which is zero since v⃗ is constant	

A
v⃗ · n⃗ dA =


V
divv⃗ dV = 0.

For the polyhedron, we can thus write	
A
v⃗ · n⃗ dA = v⃗ ·


i

Ain⃗i = 0.

This means the sum of all area-weighted normals


i Ain⃗i of the
polyhedron must be zero, since v⃗ is arbitrary. Therefore, if the
forces F⃗i applied to a point in space are perpendicular to the faces
of a polyhedron, and their magnitudes proportional to the areas of
the faces, the sum of these forces must be zero, leaving the point
in equilibrium

i

F⃗i =


i

Ain⃗i = 0.
3. Reciprocal, convex, polyhedral form and force diagrams

Apolyhedral diagram consists of vertices, edges, faces, and cells.
The faces can be bounded or unbounded, and cells can be open
or closed, as seen in Fig. 2. Two diagrams are reciprocal if certain
topological and geometrical requirements are fulfilled.

3.1. Duality

The diagrams are required to be dual. Two diagrams are dual if
the following statements are true:
• Each edge ei of the form diagram corresponds to one and only

one face fi∗ of the force diagram (Fig. 2(b)).
• Each vertex vi in the form diagram corresponds to a closed

polyhedral cell pi∗ in the force diagram (Fig. 2(c)).
• Each open/closed polyhedral cell pi of the form diagram

corresponds to one and only one vertex vi
∗ of the force diagram

(Fig. 2(d)).
• Each bounded/unbounded face fi in the form diagram corre-

sponds to one and only one edge ei∗ in the force diagram
(Fig. 2(e)).

A direct result of these requirements is that the number of edges
in one diagram is equal to the number of faces in the other, and that
thenumber of vertices is equal to thenumber of cells (Fig. 2(b)–(e)).

Fig. 3(a), (b) illustrates these topological relationships. The
elements of the form diagram are labeled with lower case letters,
and the elements of the force diagram tagged with an asterisk (∗).

3.2. Planarity and perpendicularity

If, in addition, all faces are planar, and all edges perpendicular
to their dual faces, the diagrams are reciprocal. The force diagram
then represents the structural equilibrium of the system of forces
represented by the form diagram, with the force in each edge of
the form diagram

F⃗ei  equal to the area of its dual face Af ′i
.

Note that due to the presence of external loads and reaction
forces, the form diagram has both bounded and unbounded faces
andopen and closed cells. The force diagram, on the other hand, has
only bounded faces and closed cells. The outside faces of the force
diagramcorrespond to the external forces. All other faces represent
the internal forces of the form.

The closed cell formed by the outside faces represents global
equilibrium of all external forces. Each internal cell p′

i represents
the equilibrium of its dual node vi.

Fig. 3(a), (b) illustrates the reciprocal relationships between
form and force diagrams in 3D. The elements of the reciprocal force
diagram suffixed with an apostrophe (’).

3.3. Convexity

In this paper we focus on the equilibrium of compression or
tension-only structures. A system of forces is in pure compression
(or tension), if its force polyhedron is a proper cell decomposition
of three-dimensional space. This constraint is analogous to the
conditions for equilibrium of spider webs described by Ash
et al. [27]. A force polyhedron is a proper cell decomposition of
space, if the following statements are true:
• every point in space belongs at least to one cell;
• the cells have disjoint interiors;
• the decomposition is face to face; that is, every face of one cell

is a complete face of another cell.

4. Constructing reciprocal polyhedrons

In this section, we describe a straightforward algorithm for
constructing a pair of reciprocal diagrams from a given polyhedron
representing either the form or force diagram of a structural
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Fig. 2. Topological relationships between the form diagram Γ and the force
diagram Γ ′ in 3D: (a) Γ and its reciprocal Γ ′; (b) edge ei of Γ and its corresponding
face fi∗ of Γ ′; (c) closed cell pi∗ of Γ ′ representing the equilibrium of a node vi of
Γ ; (d) open cell pi of Γ and its corresponding vertex vi

∗ of Γ ′; and, (e) open face fi
of Γ and its corresponding edge ei∗ of Γ ′ .

system. For simplicity of the explanationwe assume here the given
diagram is the force diagram.

As depicted in Fig. 4, the algorithm consists of three main
sections: (1) constructing the force diagram fromagiven geometric
representation and extracting its topology (see Section 4.1); (2)
generating the topology of the form diagram (see Section 4.2); and
(3) imposing perpendicularity (see Section 4.3).

4.1. Force diagram topology

The first step is to determine the topology of the force diagram.
The topology of a polyhedron can be describedwith awinged-edge
Fig. 3. Reciprocal relationships between the formdiagramΓ and the force diagram
Γ ′ in 3D: (a) edge ei of Γ and its corresponding face f ′

i of Γ ′; and, (b) piped
representation of the magnitudes of the equilibrated forces |Fei | proportional to the
areas of the corresponding faces Af ′i

of Γ ′ .

data structure (WED) [28]. With common CADmodeling software,
it is possible to represent a polyhedron by a wireframe model that
consists of edges and vertices, or a boundary representationmodel
that consists of connected surfaces or mesh elements (Fig. 5).

A wireframe model is essentially a set of connected lines. Its
connectivity graph can be easily determined by identifying all
unique vertices among the start and the end points of the lines,
and assigning a pair of connected vertices to each line (Fig. 5(a)).
The faces of the input geometry are not directly represented by the
wireframe and should be detected from the connectivity of vertices
and edges using an algorithm that can recognize all possible planar
faces in the model.

Boundary-representation (BREP) models already contain the
information of the faces (Fig. 5(b)). This input therefore simplifies
the construction of the WED, since no face finding is required.
Note that the faces of BREP models are not necessarily planar. An
algorithm for planarizing its faces can be found in [29], for example.

From the vertices, edges, and faces of the input model, we
construct the WED and find all internal cells and one external cell,
as seen in Fig. 6.

4.2. Form diagram topology

The connectivity of the form diagram follows immediately from
the adjacency graph of the polyhedral cells of the force diagram.
We can, therefore, construct a topologically correct form diagram
by connecting the centroids of adjacent cells, v∗

r , v∗

i , v∗

j in the
force diagram (Fig. 7(a)). Each internal cell adjacent to the external
cell is furthermore connected to the centroids of its external faces
(Fig. 7(b)).

4.3. Form diagram perpendicularity

So far, we constructed a polyhedral frame that has the topology
of the desired final form diagram. However, the edges of this
polyhedral frame are generally not perpendicular to the faces of
the force diagram.

We impose perpendicularity through an iterative procedure in
which all iterations consist of two steps. A similar algorithm is used
as the one for 2D force diagrams described by Rippmann et al. [30].
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Fig. 4. Form-finding flowchart representing multiple stages of the form-finding
algorithm.

a b

Fig. 5. (a) Wireframe model of a force diagram including the connectivity
information of edges and vertices; and (b) boundary representation model of the
force diagram consisting of connected faces.

At the start, we compute the normal vectors of the faces of each
polyhedron of the force diagram obtained in Section 4.1. Then, in
the first step of each iteration,we rotate the edges of the polyhedral
frame around their mid point, found in Section 4.2, such that they
become parallel to the normal vectors of the faces of the force
diagram. This requires the edges of the polyhedral frame to become
disconnected. Therefore, in the second step of each iteration, we
reconnect the edges, which then results in a polyhedral frame that
is ‘slightly more perpendicular’ to the faces of the force diagram.
Fig. 6. Visualization of the winged-edge data structure of the force diagram.

a b

Fig. 7. (a) The internal vertices and edges of the topological polyhedral frame
are constructed by connecting the interiors of adjacent polyhedral cells; and (b)
connecting the internal vertices to the external faces completes the polyhedral
frame’s topology.

The procedure is repeated until all edges are perpendicular to their
reciprocal faces up to a chosen tolerance (Fig. 9).

Fig. 9(a)–(c) show the different steps of the first iteration for
edges e∗

ij , and e∗

ir . Note the use of an asterisk (∗) as suffix at this
point, indicating that the diagrams are not yet reciprocal, but
merely topologically dual. Fig. 9(d) shows the edges at the end of
the iterative procedure, at which point they are perpendicular to
corresponding faces f ′

j and f ′

i of the force diagram, up to a given
tolerance.

Finally, we visualize the distribution of forces by adding thick-
ness to the edges of the form diagram, proportional to the area of
the reciprocal faces in the force diagram. Fig. 10 shows the four
stages of the ‘form diagram perpendicularity’ algorithm.

Although a proof of convergence is not provided in this study,
convergence was not a concern in any of the presented examples.
Fig. 8 gives an overview of the required number of iterations and
computing times for the structures in Figs. 11 and 12.

5. Exploring structural forms in pure compression or tension

In this section, we focus on the equilibrium of spatial forms in
pure compression. A spatial frame is only guaranteed to be in pure
compression, if its force diagram is a proper cell decomposition of
space as defined in Section 3.3. Awide range of structural forms can
be explored by aggregating (convex) polyhedral force cells. Fig. 11
depicts multiple examples of cell aggregations and their reciprocal
form diagrams. Each example in Fig. 11 consists of four drawings
in two columns. The left column represents the aggregation of
multiple polyhedral cells and the resulting force diagram. The
right column represents the reciprocal structural form using a
bar-node representation, and a form diagram representation in
which the forces in the members are visualized by the thickness
of the pipes. For readability of the diagrams, and particularly to
clarify the reciprocal relationship between them, a color gradient
(from blue to red) is used to visualize the proportional range (from
minimum to maximum) of force magnitudes in the edges of the
form diagram, and thus of the areas of the corresponding faces in
the force diagram.
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Fig. 8. The number of iterations and computing times of the form finding process of the examples in Figs. 11 and 12.
(a) Step = 1. (b) Step = 1.

(c) Step = 1. (d) Step = k.

Fig. 9. (a) Computing normals of the faces; (b) aligning edges with their corresponding normals of the faces of the force diagram; (c) reconnecting geometry; and (d)
progression and the end of the iterative process.
a b

c d

Fig. 10. (a) Polyhedral frame, with a topology of the form diagram that is not
perpendicular to the force diagram; (b) imposing perpendicularity; (c) reciprocal
polyhedral frame as form diagram; and (d) visualization of the force distribution in
the form diagram.

Fig. 11(a) shows a force diagram resulting from the aggregation
of tetrahedral cells that converge to a point. This force diagram is
structurally reciprocal to a form diagram that is a compression-
only ‘surface’ network of forces, a thrust network, subjected to
non-parallel applied forces. In Fig. 11(b), an aggregation of 5-
sided polyhedra that converge to a line results in a force diagram
that is reciprocal to another type of thrust network. Fig. 11(c)
represents an example of an aggregation of 5-sided and 6-sided
polyhedra in two layers. The resulting force diagram is reciprocal
to a spatial system of forces in a double-layered compression
structure. Fig. 11(d) shows a radial aggregation of tetrahedra
stacked in multiple layers. This force diagram is reciprocal to a
tubular system of forces in compression. Scaling tetrahedra while
aggregating them in Fig. 11(e) can describe a force diagram that
is structurally reciprocal to a 3D branching, structural form. More
spatially complex structural forms can also emerge by aggregating
space-packing polyhedra such as the aggregation of a regular and
a truncated tetrahedral cells (Fig. 11(f)). This force diagram is
structurally reciprocal to a cellular form diagram.

These examples clearly demonstrate the potential of using the
aggregation of force polyhedra to explore awide range of compres-
sion or tension only forms for a variety of loading conditions in
three dimensions.

As a final example, Fig. 12 depicts a complex branching struc-
ture with 72 nodes and 176 branches. Consequently, the force dia-
gram has 72 convex cells with a total of 176 faces. The top faces of
the force diagram are horizontal, and therefore represent a set of
vertical applied loads. These loads could, for example, correspond
to the weight of a floor slab supported by the tree. The four large
vertical faces on the sides represent the horizontal reaction forces
at the four corners at the top, and the horizontal faces at the bottom
represent the vertical reaction forces on the ground.

6. Manipulating the force diagram

Once the reciprocal form and force diagrams are found, the
designer can manipulate the geometry of the force diagram
and consequently the form diagram in the two possible ways:
manipulations that preserve the geometry of the form, and only
redistribute the force magnitudes in the form diagram; and
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e f

Fig. 11. Six examples of the design of spatial systems of forces by aggregation of polyhedral force diagram cells. Aggregation of (a) tetrahedral cells converging to a point;
(b) 5-sided polyhedra converging to a curved line; (c) 5-sided and 6-sided polyhedra in two layers; (d) tetrahedra stacked radially in multiple layers; (e) tetrahedra in a
fractal-like pattern; (f) regular and truncated tetrahedra. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
manipulations that change both the geometry and the distribution
of the forces in the form diagram.

6.1. Manipulating the force and preserving the geometry of the form
diagram

For statically indeterminate systems of forces, the designer can
modify the areas of the faces of the force diagramwithout changing
the direction of their normal vector. Such a modification changes
themagnitude of the internal and external forceswithout changing
the geometry of the form diagram. One possible method to change
the area is to move faces along their normal vector direction.
This transformation preserves the reciprocal relationship to a form
diagram with fixed geometry. Each cell of the force diagram is
adjacent to at least one other cell, and, therefore, shares a face
with that adjacent cell. There are only two types of topologically
different faces in the force diagram that a user can select: the local
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Fig. 12. A complex 3D branching structure designed using 3D form and force diagrams: (a) the force diagram consisting of 72 closed, convex cells; and (b) the reciprocal
form diagram; and (c) exploded axon of the force polyhedrons representing various groups of polyhedral cells of the force diagram.
face, and the global face. Local face is a face that shares edges only
with the faces of a single cell. The change of the area of the local
face alters the geometry of a single cell in the force diagram and
therefore, changes the force distribution in a single node in the
reciprocal form diagram.

Fig. 13(a) shows the process of changing the area of a local face.
The user can move the selected face along its normal direction to
change its area. This change alters the area of the adjacent faces
only for that single polyhedral force cell. The force magnitudes
are adapted accordingly in the form diagram and visualized by the
thickness of the pipes.

A global face is a face that shares at least an edge with a face
of an adjacent cell. Any change in area of the selected face, there-
fore, affects the area of the adjacent faces in multiple polyhedral
cells of the force diagram. This thus changes the force magnitudes
in several nodes of the form diagram. Fig. 13(b) shows the process
of selecting and changing the area of a global face. As illustrated,
the user moves the face along its normal vector, which causes the
motion of its adjacent faces in the neighboring cell. As a result, the
change in the area of the global face not only affects the area of
the faces of a single cell, but also alters the area of the faces of its
adjacent cells.
Another possible manipulation that preserves the geometry of
the form is to globally scale the force diagram. This increases or
decreases the overall magnitude of the forces in the form diagram
proportionally. Fig. 13(c) illustrates the process of selecting a
vertex and changing the area of the faces in the force diagram. If the
vertex moves (in any direction) the faces of the polyhedron will no
longer stay planar. Therefore, the only possible transformation that
changes the area of the faces in the force diagramand preserves the
geometry of the form diagram is scaling. As illustrated in Fig. 13(c),
the magnitudes of the forces are decreased or increased globally.

6.2. Manipulating the force and changing the geometry of the form
diagram

Selecting and moving a vertex of the force diagram results in a
polyhedron with non-planar faces (Fig. 14). If such a manipulation
is induced by the user, the faces of the force diagram must be
planarized again prior to finding the reciprocal form diagram. An
iterative approach can be used to planarize the faces similar to
the algorithm presented by Rippmann and Block [29]. Since this
manipulation changes the direction of the normal vector of the
faces connected to the selected vertex, the geometry of the form
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Fig. 13. Manipulations of the force diagram: (a) moving a local face along its normal, (b) moving a global face along its normal, (c) global scaling of the diagramwith respect
to a vertex, and (d) free movement of a vertex.
diagram will no longer be kept the same. Fig. 13(d) represents
the force distribution and the geometry change of the form and
the force diagrams before and after moving a vertex of the force
diagram.

7. Discussions and future work

This paper discussed the basis for a three-dimensional graphi-
cal method for the design of spatial frames that preserves the intu-
itive and explicit control provided by traditional two-dimensional
graphic statics through the use of form and force diagrams.
We have described the properties of reciprocal form and
force polyhedrons and defined the requirements that guarantee
compression- or tension-only equilibrium.

We have provided a straightforward algorithm for constructing
a pair of reciprocal polyhedral diagrams from a given polyhedron
representing either the form or force diagram of a structural
system.

We have shown how systems of forces in pure compression (or
tension) can be generated by constructing force diagrams through
the aggregation of convex polyhedral cells representing the equi-
librium of individual nodes in the system.
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Fig. 14. (a) Selecting a vertex of a force diagram; (b) moving the vertex in the 3D
space; (c) curvature analysis of the force diagram with non-planar faces; and (d)
curvature analysis of the force diagram after planarization.

Finally, we have discussed the effects of transformations of
the force diagram on the geometry of the form diagram and the
distribution of forces in it.

It is clear that many aspects of the proposed methodology
require further exploration to establish a complete theory of
reciprocal polyhedra and their interpretation as form and force
diagrams for the design of spatial frames. Such explorations
could be concerned with the development of different algorithms
for constructing reciprocal diagrams or an investigation of the
conditions for existence of those diagrams in a structural context.

Some practical considerations could also provide interesting
directions for further research. Itwould, for example, be interesting
to investigate how tension and compression can be combined
while preserving the legibility of the force polyhedron.

Another aspect that has not been addressed in this paper is
the application of geometric constraints on both diagrams. These
constraints are necessary to impose boundary conditions on the
form diagram such as the location of the lines of action of applied
loads and locations of the supports. They are also necessary to
control the size and orientation of specific faces of the force
diagram such that they match the orientation and magnitude of
external loads defined in the form diagram.

Appendix. Maxwell’s reciprocity in 3D

Rankine did not provide a method by which a polyhedral
frame and its reciprocal force diagram may be constructed.
Maxwell proposed to address this problem in a purely geometrical
manner, and stated some of the properties of reciprocal figures
and the condition of their existence [3]. According to Maxwell’s
(geometric) definition, reciprocal figures both consist, solely, of
closed polyhedra such that:

• each figure is made up of closed polyhedra with planar faces;
• every point of intersecting lines in one figure is represented by

a closed polyhedron in the other; and
• each face in both figures belongs to two and only twopolyhedra.

According to Maxwell, the simplest figure that fits this
definition, and for which, thus, a reciprocal can be found, is the
group of tetrahedral cells resulting from five points in space
(Fig. A.15(a)). These five points are connectedwith ten lines, which
form ten triangular faces making up five tetrahedra. Each face of
a b

c

Fig. A.15. (a) Five points in space connected by ten lines; (b) ten triangular faces
and five tetrahedra, one external cell and four internal tetrahedral cells; and (c)
connecting the centers of the five circumscribing spheres results in the reciprocal
figure visualized with dashed lines.

this figure is shared by only two tetrahedra (Fig. A.15(b)). Note
that each of the four inner tetrahedra shares a face with the outer
tetrahedron.

The reciprocal of this figure can be found through strictly
geometrical operations. Indeed, connecting the centers of the
circumscribing spheres of each tetrahedron results in a figure in
which the edges are perpendicular to the faces of the original
figure (Fig. A.15(c)). On the difficulty of constructing reciprocal
polyhedra, Maxwell says the following:

‘‘It is manifest that the mechanical problem may be solved,
though the reciprocal figure cannot be constructed owing to the
condition of all the sides of a face lying in a plane not being
fulfilled, or owing to a face belonging to more than two cells.
Hence, the mechanical interest of reciprocal figures in space
rapidly diminishes with their complexity.’’

Maxwell, furthermore, points out that these reciprocal figures
are the same as the reciprocal figures of Rankine’s. He states that,
indeed, if we call one the force figure and the other the form figure,
the mechanical interpretation of the relationship between these
figures is that the area of a face in the force figure represents the
magnitude of force in the line perpendicular to that face in the form
figure such that the entire system is in equilibrium. For instance, in
Fig. A.16(a), the area of the face that ismadeupby the three vertices
v′

2, v
′

4 and v′

5, is proportional to the magnitude of the force in edge
e21. The node v1 is reciprocal to the tetrahedron p′

1 and edge e52 is
reciprocal and thus perpendicular to the face f ′

5 (Fig. A.16(b)–(e)).
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a

b c

d e

Fig. A.16. (a) Reciprocal figures in 3D: the area of the face between vertices v′

2 , v
′

4 ,
and v′

5 , in the force figure is proportional to the magnitude of the force in edge e21
in the form figure; (b) and (c) a node in one figure represents a closed tetrahedron
in the other, and vice versa; (d) and (e) each edge in one figure corresponds to a face
in the other figure, and vice versa.
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