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a b s t r a c t

In this paper, we introduce a structural form finding plugin called PolyFrame for the Rhinoceros
software. This plugin is developed based on the methods of 3D Graphic Statics and Polyhedral
Reciprocal Diagrams. The computational framework of this plugin uses new robust and efficient
algorithms for the creation and modification of complex funicular, compression-only structural forms
and is freely available for students, designers, researchers, and practitioners in the fields of architecture,
structural engineering, mechanical engineering, and material science. The geometry-based structural
design methods are one of the most intuitive yet powerful structural design methods that have
recently been extended to 3D based on the Principles of the Equilibrium of Polyhedral Frames. Still,
the increased geometrical complexities of the polyhedral diagrams hinder more in-depth practical
applications and the research in this field. The framework proposed in this paper can manage, in
near real-time, the creation and transformation of reciprocal polyhedral diagrams with a large number
of elements as form and force diagrams for structural design purposes. The paper also introduces a
hybrid object-oriented data structure that extends and generalizes the previously proposed approaches
and thus allows the users to incorporate a variety of different geometric constraints, including edge
lengths and the location of the supports from the initial stages of design. Additionally, a new parallel
manipulation algorithm is introduced that is capable of transforming polyhedral diagrams while
preserving the edge directions and face normal. As a result, a designer can effectively manipulate
both structural form and its force distribution without breaking their reciprocity.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Funicular structural forms carry the applied loads in the form
f pure tensile or compressive axial forces since the form or
eometry of the structures precisely matches the direction of
ts internal flow of forces. Such structural forms are considered
s highly efficient systems if loaded based on the initial design
oading case and excluding buckling performance. This is due to
he fact their geometry maximizes the structural performance
nd minimizes the use of materials.

hysical form finding techniques

Since the 17th century, many scholars, researchers, and prac-
itioners have worked on this topic and suggested a variety of
ethods to find the geometry of compression-only or tension-
nly structural forms for a given system of applied loads. The
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most well-known instance of these methods is the hanging chain
model proposed by Robert Hooke in 1675 [1]. He used a simple
chain and showed that the chain forms a funicular tension-only
geometry under its weight. The inverted geometry then works
as a compression-only form for the same given applied loads
if buckling is not of concern [2–4]. The Sagrada Familia church
is an excellent example of using such techniques in design and
engineering where Antoni Gaudí spent years in building tedious
hanging chain models to find the 3D funicular forms for his
breathtaking structures (Fig. 1) [5–7].

Numerical form finding techniques

Advances in computer science and engineering have allowed
the development of techniques such as physics simulation en-
gines [8], particle–spring systems [9,10], force density meth-
ods [11,12], and dynamic relaxation [13] to simulate the
physical transformation of materials and find the funicular forms
for the given loading conditions and substitute tedious physical
form-finding techniques [14].

In all these techniques, a designer starts with an arbitrary
network as an input and receives a tension/compression-only
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Fig. 1. Left: Physical form finding by Antoni Gaúdi; and Right: The Basílica de la
Sagrada Família’s funicular structures designed by Gaúdi (photo credit: authors,
2019).

result as an output. In fact, the final geometry is the result of a
black box computational processes where the contribution of the
designer is limited to framing the design question, similar to the
physical form finding process. Note that the word black box in this
ontext only refers to the lack of an intuitive relationship between
he derived form and the internal and external forces. Although
umerical methods are quite powerful in finding efficient equi-
ibrium solutions, it is still challenging for some designers to
ecognize the effective parameters in the form finding process.
oreover, these methods are harder to be used as an intuitive
edagogical tool to explain the structural concepts for educational
urposes.

eometry-based form finding methods

In contrast to these black-box numerical methods, there is a
owerful and intuitive method of structural design called Graphic
tatics (GS) which is based on pure geometry. Graphic Statics (GS)
ethods originated in the pre-digital era and continue to be used
nd developed even today [15–27].
In this method, the geometry of the structure is represented

y a geometric diagram called form, and the magnitude and equi-
ibrium of forces is represented by another geometric diagram
alled force. These diagrams are reciprocal i.e. geometrically de-
endent and topologically dual. Some of the structures designed by
S-based methods are among the best examples of innovative
se of material and efficiency, and many eminent engineers
nd designers such as Guastavino, Maillart, Koechlin, Nervi con-
tantly used graphic statics in the design of their masterpieces
4,21,28,29]. Despite its clear strength and advantages, traditional
raphical statics were based on 2D diagrams, and therefore, a
esigner can only design 2D abstraction of three-dimensional
tructures. Moreover, the lack of computational and represen-
ational tools in the 19th century limited the use and progress
f graphic statics. It encouraged many researchers to shift to
umerical methods at the end of the 19th century.
These methods have been extended to 3D on the basis of sev-

ral approaches. One approach is based on ‘‘the Principle of the
quilibrium of Polyhedral Frames’’, a 150-year-old proposition by
ankine in Philosophical Magazine [16,17,30]. This approach is
 f

2

Fig. 2. (a) A 3D structural joint with an applied force and internal forces in
its members; (b) the form diagram/bar-node representation of the same joint
in the context of 3DGS; and (c) the force diagram/polyhedron representing the
equilibrium of the same node in 3DGS [43].

used for form finding of high-performance lattice structural sys-
tems with polyhedral geometries [25,31–41]. The other approach
is based on vector-based reciprocal diagrams in 3D suggested
by Maxwell [16] in his groundbreaking paper ‘‘On Reciprocal
Figures, Frames, and Diagrams of Forces’’, which is beyond the
scope of this paper.

The scope of this paper is limited to the method based on
Rankine’s proposition which is called 3D Graphical Statics using
Reciprocal Polyhedral Diagrams. In this method, the equilibrium of
the forces in a single node is represented by a closed polyhedron
or a polyhedral cell with planar faces (Fig. 2.c). Each face of the
force polyhedron is perpendicular to an edge in the form diagram
(Fig. 2.b), and the magnitude of the force in the corresponding
edge is equal to the area of the face in the force polyhedron. The
sum of all area-weighted normals of the cell must equal zero. This
can be proved using the divergence theorem [31,34,37,42].

In this method, the term polyhedral frame is used for a configu-
ration of bars and nodes, establishing a three-dimensional thrust
network of forces with no moment resistance at the joints. The
term frame should not be mistaken with the structural engineer-
ing literature’s frame structures with fixed joints and bending
moment capacities.

The limitations of polyhedral graphic statics
The 3D/polyhedral graphic statics has some limitations as

pronounced by Maxwell [16] in 1864. As mentioned by Maxwell,
there are specific equilibrium problems that can be solved using
vector-based graphic statics, but might not be easily solved using
polyhedral graphic statics.

Vector-based 3D graphic statics
Graphic statics has also been extended to 3D based on polyg-

nal reciprocal diagrams as suggested by Maxwell [16] and later
y Cremona [20]. In this approach, each edge in the form diagram
s reciprocal to an edge in the force diagram, and the equilib-
ium of forces is represented by closed non-planar polygons.
his method is often referred to as the vector-based 3D graphic
tatics [26,44–47].

urrent implementation limitations
Using the reciprocal polyhedral diagrams for form finding

equires a robust computational framework able to handle in
ear-real-time the creation and modification of those diagrams.
he extraction of a reciprocal funicular form from a given group
f faces that define closed polyhedral cells was addressed in [32]
nd [48]. However, the algorithms presented in the former cannot
andle a large number (300+) of faces as input in a reasonable
mount of time (e.g., less than 10 s) that would permit user

eedback or without crashing the host application.
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Furthermore, the user did not have direct control in manipu-
lating the diagrams in the former. Lee [48] addressed this problem
and released a set of tools for 3d graphic statics as a Python
package part of COMPAS [49]. The extension is named COMPAS-
3gs [50]. Nevertheless, the capability of the proposed methods to
handle interactive geometric manipulations for a large number
of faces should be attested. Moreover, the direct manipulation
of the polyhedral geometry that does not break the diagrams’
reciprocity was not addressed. All these algorithms are based on
iterative geometric methods. i.e., the reciprocity is induced by
making the edges of the constructed diagram perpendicular to
the faces of the input diagram in multiple iterative steps. The
slow processing time for the convergence of the solutions and
the self-intersection of polyhedral faces during the computation
process are among the main challenges of working with iterative
methods.

Recently, a new tool that brings the research developed at
Block Research Group by Akbarzadeh et al. [31] was released
by an independent developer, Graovac [51], as an add-on for
Grasshopper. Although the add-on is considerably faster and able
to handle a large number of (10k+) elements, it still does not ad-
dress the diagram manipulation and subsequent transformation
of the reciprocal polyhedral diagrams. Moreover, it cannot con-
struct reciprocal diagrams for a given set of geometric constraints
and thus is quite limited in design applications.

In another recent development, Hablicsek et al. [43] provided
an algebraic method for a single-step construction of the recip-
rocal polyhedral diagrams of 3D graphic statics. Although the
algebraic formulation is quite robust in defining the reciprocal
diagrams’ mathematical relationships, the accumulation of the
numerical errors might cause problems for a very large number
(10k+) of elements (See Section 3.2). As a result, even though,
in some cases, the algebraic methods cannot find any solution,
the iterative methods can still find some within a certain toler-
ance defined by the user. This is an essential advantage of using
iterative methods over algebraic techniques.

1.1. Contribution

This paper presents a hybrid data structure which can re-
duce the computational time of working with such polyhedral
geometry. Consequently, it can increase the maximum number
of polyhedral faces that can be processed within a reasonable
amount of time (less than 10 s) that allows for user feedback.
It also propose a new and more general computational algo-
rithm capable of handling multiple geometric constraints applied
simultaneously to polyhedral elements. Further, a new damp-
ing function is introduced for the iterative process that greatly
reduces the self-intersecting instances in the compression-only
form finding method. Although self-intersection is not desirable
for compression-only form finding, it is necessary for combined
tension and compression systems which is not discussed in the
context of this paper (see for example, [48,52,53]). Moreover, a
new, graph-based parallel transformation algorithm is presented
capable of direct manipulating polyhedral diagrams while keep-
ing the alignment of the edges (reciprocity of the diagrams)
intact. The outcome of this research is available as a free plu-
gin called PolyFrame [54] for Rhinoceros software [55]. The
plugin implements via separate Rhino commands the workflow
presented in Fig. 3 for iterative, compression-only, form finding
of structural form. Section 5 presents an overview of the im-
plemented software solution in Rhinoceros. All algorithms and
methods presented in this paper are accessible on the PolyFrame
repository on GitHub [56].
3

Fig. 3. A general overview of the workflow using the iterative transformation al-
gorithm. The flow chart includes the icons and the names for the corresponding
commands (in parenthesis) implemented in PolyFrame the Rhino3d plug-in.

1.2. Nomenclatures

Table 1 presents a synthetic view of all the symbols used in
the paper and their associated notations.

2. Developing a new hybrid data structure

The first step in making possible a faster and more robust
interaction with 3D graphic statics (3DGS) using reciprocal poly-
hedral diagrams was to create a new data structure. A more
intuitive, less memory intensive, and an arguably more robust
data representation of the polyhedral diagram will be introduced
in the next paragraphs.

In order to fully explain this concept, we will first describe
the components of the data graph and their relation to the parts
of the polyhedral diagram. We call this a hybrid data structure
because its objects encode the polyhedral properties (geometry)
as well as each part’s links to relevant other polyhedral parts
(topology).

2.1. 3D reciprocal diagrams

In the context of graphic statics, we have two reciprocal di-
agrams that are geometrically dependent and topologically dual,
where the change of one affects the properties of the other. The
force diagram consists of closed polyhedral cells. The closeness
of each cell represents the equilibrium of a node in the dual
diagram, and the face areas of the force represent the magnitude
of internal/external forces in the form diagram. In our polyhedral
approach, the form diagram consists of both open and closed
polyhedral cells with planar faces where the edges of the open
cells represent the applied loads or reaction forces in the sys-
tem [31]. The inclusion of open cells in the form diagram is the
main difference of topological relationship between the primal
and dual as presented in this paper and the relationship proposed
by Maxwell in 1864 [16]. In Maxwell’s proposition, both form
and force diagrams consist of closed polyhedral cells where both
diagrams can be called form and force interchangeably. However,
the form diagram in Maxwell’s case was a self-stressed system,
which does not allow for the inclusion of the external forces.

Let us call the starting (input) diagram the primal, Γ , and the
reciprocal polyhedron the perpendicular dual, Γ † (Fig. 4). Both
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omenclature for the symbols used in this paper and their corresponding
escriptions.
Topology Description

Γ Primal diagram
Γ † Dual, reciprocal diagram
vi Vertex i in Γ

vt
i Transformed vertex i from diagram Γ

e(i,j) Edge between vertices i and j in Γ

et(it ,j) Partially transformed edge with transformed vertex i

f(i,j,k,..) Face in Γ defined by i,j,k,.. vertex set

f t (it , j, kt ) Partially transformed face with transformed vertices i,k

c(i,j,k,..) Cell in Γ defined by i,j,k,.. vertex set

v
†
i Vertex i in the dual diagram Γ †

e†(i,j) Edge between vertices i and j in dual diagram Γ †

f †(i,j,k,..) Face in Γ † defined by i,j,k,.. vertex set

c†(i,j,k,..) Cell in Γ † defined by i,j,k,.. vertex set

V Set of vertices of Γ

V t Set of transformed vertices of Γ

E Set of edges of Γ

F Set of faces of Γ

F t Set of partially transformed faces in Γ

F a Subset of F t with active in-face intersections
F p Subset of F t with passive in-face intersections
F o Subset of F t with out-of-face intersections

Geometry

1 Original position in 3d space for vertex 1
1p Perpendicular transformation for vertex 1 position
1l Edge length transformation for vertex 1 position
1s Face area scale transformation for vertex 1 position
1t Transformed position for vertex 1
p Position for a generic vertex
ex Generic edge with one vertex in p
px Transformed position for p by rotation of ex
ppc Position constraint for vertex in p
pae Average position of multiple edge-related transforms
paf Final average position of vertex
pan Normalized average position of vertex

Vectors

vi Computed constraint vector acting on vi
vt Averaged transform vector acting on vi

Parameters

tvi Constraint function for vi
te(i,j) Constraint function for e(i,j)
tf(i,j,k..) Constraint function for f(i,j,k..)
mvi Multiplication factor for tvi
me(i,j) Multiplication factor for te(i,j)
mf(i,j,k..) Multiplication factor for tf(i,j,k..)
s Iteration number
smax Maximum iteration number
δ Maximum recorded vertex translation per iteration
δmin Minimum allowed vertex translation

Other

Vv Dictionary of sets of vectors vertices in Γ

Vf Dictionary of sets of scale factors for vertices in Γ

form and force diagrams can be considered the primal (input),
and thus the other diagram will be called the dual (output). The
vertices, edges, faces, and cells of the primal are denoted by v, e,
f , and c , respectively, and the ones of the dual are super-scripted
with a dagger (†) symbol (Fig. 4). Each face of one diagram is
perpendicular to the edges of the other.

2.2. Primal as force diagram

The force diagram consists of closed polyhedral cells and if
regarded as the primal, its topological dual diagram will be called
4

Fig. 4. Data structure connections in two dual diagrams.

the form diagram as shown in Fig. 4. In this case, each polyhedral
cell in the primal is reciprocal to the internal vertices of the dual,
.g. cell c(0,1,3,4,6,5,9,8) is reciprocal to v

†
0 in Γ † (Fig. 4).

In addition, the faces f of the primal correspond to the internal
edges e† of the dual. The internal edges are those that are shared
by more than two faces. In the case of open cells in the form
diagram, an edge that belongs to a single face may be called
an open edge, and their corresponding faces may be called an
open face. For instance, the edge connecting vertices 9 and 10,
in the form, is an open edge and does not have any reciprocal
counterpart in the primal. Its vertices 9 and 10 also excluded from
the topological relations of the two diagrams. Nevertheless, the
faces with an open edge in the dual are included in the reciprocal
diagrams and correspond to the primal’s external edges. Besides,
the primal’s external faces, in this case, are perpendicular to the
internal edges of the open cells in the form diagram. The areas of
the primal’s external faces represent the magnitude of the applied
loads or the reaction forces in the form. Note that if the primal
has an open/missing face, then it will be considered as a form
diagram with open cells and not as the force diagram.

2.3. Primal as form diagram

The form diagram can also be used as an input and will be
referred to as the primal. The figure starting from the form is
not included to avoid redundancy in this paper. Fig. 4 may still
represent the primal as a form if the geometric data on the
right and left are switched. Note that starting from a funicular
form is not always ideal because form finding aims to find the
geometry of the force flow for a given internal and external force
distribution. However, for highly complex models, the resulting
form may have edges that are not fully perpendicular to the dual
faces. In such cases, considering the form diagram as the primal
may let us adjust the force diagram and reach a higher level of
precision in establishing the reciprocity between the two.
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.4. Polyhedral elements as data

The data objects follow the general rules of a half-face data
ystem described Open Volume Mesh by Kremer et al. [57] with
bject types created for the following polyhedral components:
ertex, edge, face, and cell. OpenVolumeMesh focuses on the
mallest possible memory footprint for each mesh element to
acilitate working with a high number of elements. In contrast,
ur approach focuses on more feature-packed elements that store
onsiderably more connections to topologically related elements.
he main reason is simplicity in the traversal of the graph of in-
erconnections and following an object-oriented design paradigm.
his approach includes not only the data at the element level
ut also the functionality. Each element is a quasi-self-contained
ntity with properties and methods accessible directly from itself,
ble to reference all its topological relations via pointers directly.
OMPAS [49] by Block Research Group, through its VolMesh class,
mplements a similar data structure to OpenVolumeMesh that
ses key–value pairs to maintain topological relations between
olyhedral elements. Reeves et al. [58] present a fabrication ori-
nted implementation of the same data structure but focuses
n geometrical construction aspects instead of presenting the
ncoding of topological relationships.
The most basic element of a polyhedral diagram is a vertex

epresenting a polyhedral node. The polyhedral edge or half-edge
s represented as a data container with two ordered vertices.
ach half-edge maintains an active connection to its pair. The
olyhedral face or half-face is an object containing a set of ordered

edges, which include ordered sets of vertices. Polyhedral faces
are also linked to their respective pair as the base elements
of a half-face data system. The polyhedral cell is stored as an
bject containing sets of faces, edges, and vertices. The polyhedral
iagram is an encompassing data object storing sets of cells, faces,

edges, and vertices.

2.5. Polyhedral elements interconnections

The object interconnections are designed to describe the topo-
ogical relations of 3d reciprocal polyhedral diagrams closely. The
roposed data structure consists of a set of layers on which
esides a bidirectional graph representing the connections of a
ingle type of data objects like cells, faces, edges, or vertices. Every
lement on every layer connects to elements on other layers
ollowing the topological hierarchy of the polyhedral diagram.
or instance, cells are linked to their constitutive faces, faces are
inked to contour edges, and edges to their end vertices. Each
onnection mentioned above is bi-directional in the sense that
ll elements that are part of more complex ones maintain an
ctive link to those. Besides those, there are also a number of
hortcut connections that skip the hierarchy and connect the
ost complex elements. For example, cells connect directly to
ertices.
Moreover, each element on a layer is connected to all its

eighboring elements of the same type using the inter-layer
onnections. For instance, two vertices sharing an edge will be
onnected as neighbors on the same layer through the edge
onnection. The same connections can be traced for all the other
lement types such as edges, faces, and cells.
Fig. 5 illustrates a part of the data connections between the

lements of a simple polyhedral diagram, made up of only ten
ertices. In order to show the connections between the elements,
he picture contains tables with comprehensive data descriptions
or the main types that make up the polyhedral diagram de-
cribed above. Each data object (vertex, edge, face, and cell) has a
umber of slots that contain pointers or collections of pointers
o other data entities with whom the object has topological
5

Fig. 5. Structure of the data inside a polyhedral diagram.

connections. Each table exemplifies the connections for one type
of element for this connection. Each component is part of the
polyhedral diagram shown in the top part of the figure, and the
connections for the examples can be traced to it.

2.6. Connections between dual elements

The dual/reciprocal relations of a polyhedral diagram with its
dual diagram are stored at multiple levels presented in Fig. 5.
The connections between dual components are the geometric and
topological relationships of the polyhedral reciprocity. Vertices in
the primal diagram point towards corresponding cells in the dual
diagram. Edges in the primal diagram, reference faces in the dual
diagram. Faces in the primal diagram reference edges in the dual
and finally cells in the primal reference vertices in the dual. Fig. 4
shows a graphical representation of those described relationships.

2.7. Advantages of a hybrid data structure

A hybrid data structure provides a series of advantages over a
traditional hierarchical one with exclusive top-down component
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onnections where more complex elements maintain a list of
heir parts. Some of the most important advantages include a
ecentralized and redundant way of storing topological depen-
encies between the components of the two diagrams; simple
ccess, with multiple available routes, from any element in one
iagram to its corresponding element in the dual diagrams; and
he reconstruction of the dual diagram from partial data.

All those objectives are accomplished by storing pointers in-
ide each object to the relevant connected parts. A high memory
ootprint is avoided since only the number of connections (point-
rs) is increased to resolve all necessary connections. As depicted
n Fig. 5 each component maintains a number of direct connec-
ions to other data objects via pointers. Each entry in the table
nder the element name, written with subscript or superscript,
epresents a connection to another related data object. As we
re showing in the algorithm implementation in Section 3 and
specially in Section 3.4, by storing object references to connected
ub-parts as properties of any polyhedral diagram element, we
nherently have access to those objects and their methods directly
rom the starting object (embedded functions see the concluding
arts of Section 2.7). In the case of Lee et al. [41] more steps
re required to achieve the same goal. One must first extract a
ey or index from the current object then access the connected
bject from a central collection using a lookup created at start and
inally run a static algorithm with the values read from the col-
ection. In our case, since the memory pointer is already present
n the object, moving to the next, related object is a one step
rocess. In the case of dictionaries and the same is true for stored
ndexes, the similar process takes at least two steps. Our method
implifies the traversal of the data structure compared to the
ther methods when it comes to data structure explorations and
lgorithm development. Any developer using a modern coding
nvironment with code hinting (like InteliSense from Microsoft’s
isual Studio) can interactively explore the functionalities em-
edded in the objects. Furthermore, this approach enables the
irect navigation of the data structure as is stored in memory
t run-time. This is useful for debugging or exploration reasons.
he navigation is similar with the navigation of the geometrical
olyhedral diagram itself.

Simpler component access through redundant interconnections.
Redundantly-interconnected components establish a robust

ata structure. The system provides for an efficient search allow-
ng multiple paths from one object to the other parts of the data
tructure and their duals. In Fig. 4 for instance, in order to get all
he applied loads adjacent to vertex v0 from the primal (force)
iagram, one can list all the faces connected to v0 or list all the
on-exterior edges of cell c†

(0,6,5,9) in the dual diagram.
All topological connections are created at the beginning, and

he connectivity is cached for later reuse. Since all connections
etween elements are established when the structure is built,
ny subsequent specific traversal operation can be effectuated
uch simpler. This connection helps users access the data and
anipulate the diagrams instantly in an interactive environment.
Additional data is stored in the structure, and each object

n the data structure can store additional information, such as
eometric or structural properties. These include coordinates,
onstraints, target positions, length and area, as well as buckling
erformance, material details, etc.

artial diagrams reconstruction allowed
The entire geometry and topology of both primal and dual

an be reconstructed even if (due to user errors) some
eometric information is lost or topological elements get discon-
ected. This property is especially helpful for recording and prop-

gating partial transformations of the diagrams while enforcing

6

he reciprocal relationship. See Section 4 for an implementation
f the parallel transformation algorithm that makes use of this
ropriety.
Primal and dual diagrams maintain connections at the ele-

ent level. Once the dual relations are established, they can
e instantly reconstructed from their dual if their geometry is
ost since the primal and the dual diagrams are referencing each
ther. Furthermore, the reference to the dual elements ensures
he inclusion of all further modifications to any parts of the
iagrams in the connected dual reference.
A hybrid data structure offers intuitive connections between

lements with fewer steps for subsequent operations. All topo-
ogical connections exist as connections between data objects.
raversing the graph representing the polyhedral diagram can
ollow the user’s geometrical and visual understanding of the
iagram. Each connection between objects is accessible via a
pecific property of the start object using simple dot notation
n a scripting environment. For example startCell.Faces[x].Pair.Cell
gets a certain neighbor of a polyhedral cell by picking a specific
face of the startCell, selecting the element with index of x from
ts Faces collection, getting the Pair face of the selected face, and
inally getting the Cell of that Pair face.

In contrast, in a predominantly hierarchical data structure,
nly a minimum number of connections between the topolog-
cally connected elements is stored. This makes the diagram’s
nitial creation faster but slows down any structure traversal
outine that needs connections that are not yet computed. Many
pecific operations of establishing and exploring reciprocity of
olyhedral diagrams require multiple graph traversal operations.
aving all required connections between elements in the graph
ached and ready, rather than compute them for each step or
teration, will increase the speed of the algorithms that make use
f the data structure.
The data structure is implemented in the .Net Framework

.5, specifically in C# with individual classes for each element
ype like vertex, edge, face, cell, and the polyhedral diagram.
ach class implements several properties (wrapped fields with
ccessors) that hold the collections of pointers (reference types)
o the relevant connected objects, presented in Fig. 5. Besides
onstructors, each class implements several dynamic functions
methods) accessed directly from created class instances. These
rovide functionality that is specific to each type and its run-time
ontext (like its creation, the population of its data fields, linking
nd un-linking to other members, transformation etc.)

. A robust iterative algorithm for the construction of the
eciprocal polyhedral diagrams

This part of the paper discusses contributions to methods
nd algorithms employed for creating, maintaining and exploring
he reciprocal relationship between polyhedral diagrams, using
terative algorithms.

The present research implements most of the processes de-
cribed in [31] using the new hybrid data diagram, thus allowing
or increased speed and diagram complexity. Our contribution,
resented below, addresses some of the limitations of the perpen-
icularization process described in the same paper and extends
he process’ functionality through a new, more general algorithm.
ll implemented algorithms are restricted to polyhedral diagrams
ith planar and convex faces. A high-level overview of the work-

low making use of the iterative algorithm is presented in Fig. 3.
rom simple geometry, the primal diagram is created. This is
sually the force diagram. The dual diagram is topologically de-
ived from the primal. The dual is bound by several constraints,
ost notably the edges’ perpendicularity to the primal faces.
ther constraints like edge length or vertex positions, can be set
oo at this step. Finally, the iterative algorithm transforms the
ual diagram’s geometry to minimize the deviation from all the
mposed constraints.
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.1. Solution space

An algebraic formulation for the reciprocal diagrams of 3DGS
larifies the number of solutions and the parameters to control
he properties of the solutions. This information can be quite
seful, even if we use iterative algorithms to find solutions. Con-
tructing the dual from a given primal is possible by developing
lgebraic constraints between the two diagrams [43,59]. Consider
n edge e(i,j) of the primal diagram Γ and all its attached faces
1, f2, . . . , fk. The edge e(i,j) is reciprocal to a face f †

k in the dual.
y keeping the thumb of the right hand parallel to the edge, the
ingers curl around the edge going through the attached faces f1−k
stablishing a consistent orientation of the edges e†(m,n) of the face
k
† of the dual. We will denote these directed edges of the dual
y e†

(m,n).
Since the face fk† is a closed polygon, the sum of the edge

ectors e(m,n)
† should be zero. Hence, we obtain a vector equation∑

f †k

e†
(m,n)q(m,n) = 0

here the sum runs over the attached faces fm of the edge e(i,j)
of the primal Γ , and q(m,n) denotes the edge length of e†(m,n) in
the dual Γ †. We can rewrite the above equation in terms of the
chosen unit normal vectors n1−k of faces f1−k as

± n1q(0,1) ± n2q(1,3) ± ...± nkq(m,n) = 0 (1)

where we have{
+ni if matches the curl direction around ei
−ni otherwise.

Similarly, as before, each vector equation yields three linear
equations for the edge lengths, and we obtain a linear equation
diagram for the edge length vector q which can be described by
a [3e× f ] matrix that we call the equilibrium matrix A:

Aq = 0. (2)

3.2. Number of solutions

In the equilibrium matrix A, e denotes the number of edges
of the primal diagram, and f denotes the number of faces of
the primal diagram [43,59]. The dimension of the solution space
of Eq. (2) equals

GDoF = f − r (3)

where r is the rank of the equilibrium matrix A, the GDoF is called
the Geometric Degrees of Freedom of the dual diagram which is
the dimension of the solutions space. If GDoF is zero, then the
only possible solution of the equilibrium equation system is the
zero vector. In that case, the dual collapses into a point, which
we do not consider a solution. If the GDoF equals one, then there
is a unique solution, which provides a unique dual diagram (up
to scaling). Finally, if the GDoF is bigger than one, then there are
multiple significantly different solutions. The inaccuracy or the
accumulation of the numerical errors in the calculation of the
rank of the equilibrium matrix might result in GDoF to be zero.
The specific relation between the geometry of the primal which
results in zero GDoF is not entirely evident to the authors.

If the GDoF is zero, which rarely happens, the algebraic formu-
lation of 3DGS cannot help finding a solution. Nevertheless, con-
structing reciprocal diagrams using the iterative approach allows
finding the closest solution within a specific tolerance/deviation
defined by the user, and thus, is more forgiving than the algebraic
methods. Simply put, the equilibrium is achieved if the deviation

between the angle of an edge in the dual and the normal of its i

7

corresponding face in the primal is quite small — depending on
the precision of the model space. A qualitative observation over
a variety of form and force diagrams suggests that usually the
form diagram with triangular faces might have a larger deviation
compared to the configuration with no triangular face.

3.3. The algorithm development

The process proposed in this paper uses a new, more gen-
eral computational engine that works in a similar manner to
a particle–spring system operated by forces and stiffness [14].
In mathematical terms, the cumulative effect of those forces
and spring stiffness on the individual points of the systems (the
particles) is expressed as the average of a set of vectors anchored
in each point. In our implementation, all geometrical transforma-
tions, acting iteratively on a diagram, are expressed as vectors
computed individually for each vertex. Each transformation is
defined with a scaling factor that is applied to the respective re-
sulting vector acting on the vertex when computing the average.
Even though the scaling of the vectors makes this a weighted
average, for the clarity of the explanations and of the figures,
we will present it as a simple average. The exception is the
description of the software algorithm where exact description of
the implemented solution is more important.

The approach presented below allows for the inclusion of
additional user imposed rules in the form-finding process. It also
allows for the exploration of the solution space when the dual
diagram has Geometric Degrees of Freedom (GDoF).

The proposed algorithm can work in a reverse approach if
the dual has very few GDoF, and simple linear iteration cannot
establish reciprocity. This effectively stops the transformation of
the dual and starts transforming the primal until the reciprocity
and thus the equilibrium is achieved.

The iterative process works by moving the vertices of the dual
diagram in multiple steps according to the average of the set of
vectors computed for each vertex. For example, in Fig. 6, two
vectors are acting simultaneously on vertex v0 and v1. 0p and 1p
are the target positions for v0 and v1 based on the rotation that
would make edge e(0,1) parallel to the normal of its dual.

Once the edge rotates around its midpoint R, the vertices 0l
and 1l are the target positions for the edge e(0,1) with the specified
length. We can consider all those simultaneous target positions
for the vertices as vectors anchored on the vertices. At each step
of the iteration, each vertex moves to a position determined by
the average of the vectors anchored in it. The vertices move at
every step until the length of the resultant average is zero. This
final transformed position is marked as 0f and 1f respectively in
ig. 6. This can be when all the constraints are satisfied and all
ndividual vectors are zero in length, or when the constraints are
n equilibrium and the individual vector average in every vertex
s zero in magnitude.

.4. Constraint-based manipulations

Since the criteria are stored in the pertinent data objects,
ot as variables but rather as functions and are computed dy-
amically during each iteration, there is no restriction regarding
he number and type of simultaneous constraints applied on a
ransformed diagram. Together with the reciprocity specific con-
traints, like perpendicularity and planarity, other user imposed
riteria like edge length, face area or vertex position in space can
e added. The only requirement is that any applied constraints
hould be expressed as sets of vectors applied at the vertex level.
In the following paragraphs we will describe how the con-

traints for reciprocity at diagram level translate into multiple
ivergent vectors at the vertex level, for two specific operations:
erpendicularization and Planarization. Additionally we will in-
roduce a set of design specific constraints and their translation

nto vector based actions at vertex level.
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Fig. 6. Example of vector decomposition for two separate constraints:
erpendicularization and edge length.

.5. Perpendicularization

Perpendicularization is the core operation of polyhedral di-
gram transformation to achieve reciprocity between two dual
iagrams. It ensures that the edges of the dual polyhedral di-
gram become perpendicular to the corresponding faces in the
rimal diagram. The most important transformation in the case
f perpendicularization is the rotation of every edge around its
id-point. This operation can be expressed as two translations
f the edge endpoints and thus can be represented by one vector
nchored in each of the edges vertices. Fig. 6 already details this
peration.
One of improvements introduced with the framework we pro-

osed is that every vertex regardless of the applied constraints,
as a movement limit per each step of the iteration. This can be
xpressed as the damping function (magnitude limitation) for the
ector average acting on every vertex.
This feature greatly reduces the chance that large individual

ertex movements cause disturbance in the diagram through
dge flipping.
This way, transformations have the chance to be absorbed by

he polyhedral diagram before any edges reverse their direction.
his is especially useful to mitigate the potential disruptions
aused by rotating long edges connected to relatively short edges.
n such situations the short edges can be accidentally reversed
y the large movements forced by the long edges causing other
dges to intersect and produce complex faces. Fig. 8b shows how
his feature works. For an explanation of the process depicted in
ig. 8 see Section 3.7

.6. Planarization

Planarization viewed as a singular operation is a common
echnique for making the faces of a polyhedral diagram planar.
or every vertex of the planarized face this implies a translation
nto the best-fit plane computed for the position of the face
ertices. In this operation the damping function facilitates the ab-
orption of large movements into the diagram without significant
isturbance.
User-imposed constraints like a target vertex position can

e expressed as a vector connecting a polyhedral node to the
rescribed position at every step of the process. More complex

oals like a desired edge length, or a desired face area can be

8

Fig. 7. Example of vector decomposition for two separate constraints: face
planarization and scale to area.

decomposed into individual vertex movements that, in turn, can
be expressed as vector acting on polyhedral nodes.

Fig. 7 shows two different constraints decomposed as vectors
at vertex level, planarity in Fig. 7a, and face area Fig. 7b. Face
f(0,1,2,3,4,5) is not planar. During the iterative process, at each step,
the best fitting plane is computed for the face and the vertices
are projected on that plane. Fig. 7a illustrates this part of the
process. In the Figure, the projected vertex positions are in blue
with p subscript. For each vertex the vector denoting the position
transformation associated with the planarity is shown as a blue
arrow in the same Figure.

This vector is added to the vertex position. For the second
constraints, in order to achieve a certain area, the face is scaled
based on its centroid S. The operation is depicted in Fig. 7b.
This translates in moving vertices along the vertex-centroid axis.
The points denoted with s subscript show the vertex position
that resolves this particular constraint. The blue arrows in the
same Figure show the vectors that describe the transformation
associated with the area scale.

After each constraint is computed the average of the vector ac-
tions for each vertex is added to the vertex position thus moving
the vertex to a new position, closer to satisfying the constraints.
The transformed version of the face is presented in blue in Fig. 7c
as face f(0t ,1t ,2t ,3t ,4t ,5t ) and is defined by the final positions of the
vertices after a number of iterations.
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Fig. 8. Weighted average of concurrent constraints (perpendicularization of 6
edges and a target position) on one vertex during one iteration and damping
function. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

3.7. Implementation

The algorithm operates on a simplified graph representation
of the polyhedral diagram presented in Section 2.4 and Fig. 5.
The steps of the routine are presented in algorithm 1. Besides the
Γ graph input, the algorithm requires as inputs the constraints
applicable to individual vertices tvi , edges te(i,j) and faces tf(i,j,k..) .
ach constraint needs to be accompanied by a multiplication fac-
or denoted mx. The subscript x next to the multiplication factor
inks it with the corresponding constraint. If they are linked the
ultiplication factor and the constraint will have the same sub-
cript notation. The constraints are functions stored as variables
n sets connected to each graph element. All constraints need to
e defined prior to the transformation but they can adapt to the
urrent state of the graph (polyhedral diagram) at each iteration.
max defines the maximum number of iterations for the main loop
nd δmin sets the minimum distance for vertex translation in order
o consider the vertex as moved. This value is useful to determine
f the graph changes from one iteration to the next.
9

The algorithm has one main while loop with two parts: Part 1
(lines 3–25) deals with computing individual constraints for each
vertex and part 2 (lines 26–36) averages individual transforma-
tions into resultant positions for each vertex at each step of the
iteration.

Part 1. The routine works by computing each constraint function
for vertices, edges and faces if they are present in the input.
Each constraint function produces a vector denoting a vertex
translation. Vv is a dictionary storing vector sets for each vertex
and Vf is a similar dictionary storing scale factors for each vector
in the vector set. Lines 7–11 process and store individual vertex
constraints. Edges constraints are processed in lines 12 to 18.
Here the constraint function produces individual vectors for each
edge-end vertex. The vectors are stored in Vv while the unique
scaling factor for the edge is stored for each vertex in Vf . Face
constraints are processed between lines 19–25 with a similar
approach to the edges but for each individual face vertex.

Part 2. The second part of the loop computes the weighted av-
erage of the set of vectors for each vertex using the stored scale
factors. The damping function is enforced next between lines 28–
30. If the magnitude of the weighted average vector v̂t is larger
than θ the vector is scaled down to θ .

Next, between lines 31–33 the maximum magnitude per step
recorded so far δ becomes the current average vector magnitude
v̂t if this is larger than its current value. The while loop restarts
if maximum number of steps is not reached s < smax and max-
imum vertex movement per iteration is larger than an imposed
minimum δ > δmin.

Fig. 8 illustrates how the algorithm works on a single node
part of a larger polyhedral diagram during one iteration of the
iterative transformation of polyhedral diagrams (ITPD) algorithm.
In the Figure, node p is the common node for a number of 6
edges e1 to e6. In Fig. 8a each edge connected to p is rotated due
to perpendicularization, thus producing 6 divergent translation
vectors anchored in p and pointing towards different positions
in space marked 1 to 6 and shown as blue arrows. For the sake
of simplicity the other end of the edges is not shown and neither
is the center of rotation for each edge. In the second step shown
in Fig. 8b the vectors produced by each edge are averaged into
a single translation vector denoted pae. This vector is in turn
averaged with a fixed position for vertex p stipulated by the user
and denoted with ppc . The positional constraint represented by
ppc requires p to move as close as possible to a fixed position
in space. The average between pae and ppc produces the median
result of the imposed constraints for vertex p. This is shown by
notation pac in the same Figure. This image showcases also the
damping function that reduces the magnitude of the constraint
average to the maximum allowed value (θ in the algorithm) and
produces the final position for vertex p in pan.

3.8. Initial benchmark

Even though the method has been in use through a work-
in-progress version of the Rhino extension Polyframe [54] for a
more than a year at the time of writing this paper, no in depth
benchmark of its speed and capabilities was undertaken so far.
In the following paragraphs we will present a number of initial
speed and capabilities tests for the application and the embedded
algorithms. For this initial benchmark we have included two
different tests. The first is a test (Fig. 9) where a number of
three design examples with increasing complexity, taken from
our work at PSL are used. The second is an exponential stress
test based on a polyhedral module with a construction method
detailed in Fig. 12. The resulting unit, shown in Fig. 11a and
b, is repeated in space along in the x, y and z directions in
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Fig. 9. Reciprocal force and form diagrams form-found using the proposed algorithm.
ultiple steps, doubling the number of modules in each direction
t every step. Fig. 11c and d shows how a first multiplication
reates diagrams with an exponentially increased complexity.
wo Tables detail the complexity of the diagrams based on the
umber of vertices, edges, faces and cells and show perpendicu-
arization time in seconds for each benchmark test. In each case
he reciprocity between the dual diagrams (form and force) is
10
achieved up to a maximum deviation of 1 degree. Table 2 for
the design examples and Table 3 for the repeated modules test.
The data from the Tables is visualized in the graph shown in
Fig. 10.

The graph shows that for both tests the complexity of the
form diagrams increases from first to last and the same is true

for the perpendicularization time. The rate of growth however, is
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Algorithm 1: Constraint based iterative transformation of
olyhedral diagrams.
Data:

1. γ = (V , E, F ) graph of the polyhedral diagram where
vi ∈ V , e(i,j) ∈ E and f(i,j,k..) in F ;

2. Tv , Te, Tf sets of constraint functions where tvi ∈ Tv ,
te(i,j) ∈ Te, tf(i,j,k..) ∈ Tf constraint functions for vi, e(i,j),
f(i,j,k..) and mvi , me(i,j) , mf(i,j,k..) multiplication factors for
each function;

3. smax maximum iterations; δmin minimum translation; θ

maximum vertex movement limit;

Result: Γt = (V , E, F ) graph with vertex positions closest to
satisfying all constraints

1 begin
2 s←− 0
3 while δ > δmin & s < smax do
4 δ←− 0
5 Vv # store (vertex: vector set)
6 Vf # store (vertex: scale set)
7 for mti ∈ Tv do
8 v̂i ←− tvi # compute vector from constraint
9 Vv[vi] ←− v̂i

10 Vf [vi] ←− mvi

11 end
12 for tei,j ∈ Te do
13 v̂i, v̂j ←− tei,j # compute end vertex vectors

from constraint
14 Vv[vi] ←− v̂i
15 Vf [vi] ←− me(i,j)
16 Vv[vj] ←− v̂j
17 Vf [vj] ←− me(i,j)
18 end
19 for te(i,j,k..) ∈ Tf do
20 v̂i, v̂j, v̂k, ...←− te(i,j,k..) # compute corner vertex

vectors from constraint
21 for x ∈ (i, j, k, ...) do
22 Vv[vx] ←− v̂x
23 Vf [vx] ←− mf(i,j,k..)
24 end
25 end
26 for vi ∈ V do
27 v̂t ←−

∑n
x=0(Vv [vi][x]∗Vf [vi][x])∑n

x=0 Vf [vi][x]

28 if |v̂t |> θ then
29 v̂t ←− v̂t ∗

θ
|v̂t |

30 end
31 if δ < |v̂t | then
32 δ←− |v̂t |

33 end
34 end
35 s←− s+ 1
36 end
37 end

different. For the design examples test the complexity increases
somewhat linearly but the time grows exponentially. For the
repeated modules test the rates of growth are reversed. The
complexity grows exponentially but the increase in the perpen-
dicularization time is only linear.

Beyond testing the capacity and the limits of our proposed
DGS framework the benchmarks show that the topology of
11
Fig. 10. The change in perpedicularization time as a factor of diagram
complexity expressed by the number of edges of the form diagram.

Table 2
Table showing the complexity and perpendicularization times for the example
models in Fig. 9.
Fig. Model v(†) e(†) f (†) c(†) Time (s)

9a Bridge force 131 520 652 263
9b Bridge form (†) 263 652 520 131 34
9c Shell force 879 2666 2706 919
9d Shell form (†) 919 2706 2666 879 113.7
9e Tube force 645 3296 4932 2281
9f Tube form (†) 2281 4932 3296 645 327.3

Table 3
Table showing the complexity and perpendicularization times for different
aggregations of the benchmark model presented in Figs. 11 and 12.
Fig. Model v(†) e(†) f (†) c(†) Time (s)

11a 1×M 43 210 296 129
11b 1×M† 129 296 210 43 0.13
11c 23

×M 221 2404 2208 1025
11d 23

×M† 1025 2208 2404 221 0.44
– 43

×M 1369 10200 17024 8193
– 43

×M† 8193 17024 10200 1369 10.5
– 83

×M 9521 77616 133632 65537
– 83

×M† 65537 133632 77616 9521 172

the diagrams has a far greater impact on the time required to
achieve reciprocity than the number of edges of the form dia-
gram. Furthermore, we can see that for repeating force patterns
the framework scales remarkably well being able to handle 8-fold
increases in the number of elements without a similar increase
in time. It is also worth noting that for the repeating modules
test benchmark, the number of steps was the same (15) for all
diagrams. In order to provide context for our benchmarking we
have attempted to test the examples presented in Tables 2 and 3
using the previous framework presented in [31] and implemented
as a series of python scripts in the Rhino environment. The
framework was not able to handle the test examples presented
in Fig. 9 and it crashed so a perpendicularization times could not
be extracted. For the benchmark model presented in Table 3 the
previous framework was able to successfully perpendicularize the
first model 1 × M† in 12.9 s and the second model 23

× M† in
76.87 s. For the subsequent models starting with 43

× M† the
creation of dual diagrams was not possible as the framework
could not handle the large number of input faces
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(

Fig. 11. (a) A unit force module (M†) and its reciprocal form (M) and (b) used as a benchmark repeated eight times, two times in −x, −y, and −z directions
23
×M†).
f

Fig. 12. (a) to (f) illustrates the development process of a quarter of the
benchmark force polyhedron and its construction process using the edges of
a cube divided by m.

The same testing was attempted with the 3D Graphics Stat-
ics for Grasshopper tool by Graovac [51]. The tool was able to
perpedincularize the benchmark models in similar times when it
could load the model. Exact times for perpendicularization cannot
be presented as the tool does not present the total compute
time for a diagram. Furthermore since the tool runs using both
internal cycles and Grasshopper cycles, an exact run time could
not be measured. The only exact metric we could compare was
the number of iterations which was 49 for the first three models
1 × M†, 23

×M† and 43
× M† compared with 15 iteration for

PolyFrame. 83
× M† could not be obtained as the perpendicu-

larization process froze the application. 3D Graphics Statics for
Grasshopper requires pre-processed data in order to construct
any primal diagram. The geometry needs to be provided as ready-
made polyhedral cells in order to use the tool. This makes the
tool cumbersome to use and less robust as the user needs to take
care of finding the polyhedral cells and needs to make sure no
errors (like disjoint or overlapped cells) are present. For very large
diagrams with several hundreds of cells this is very impractical.

For reference all computations have been performed single
threaded on a laptop with a Core i7 8750H CPU and 32 GB of
RAM.

4. Parallel transformations of polyhedral diagrams

The parallel transformation of a polyhedral diagram or PTPD is
an operation that changes the geometry of a polyhedral diagram
while keeping the direction of its edges intact. The geometric
exploration of reciprocity or GER is the use of PTPD in order to
transform a polyhedral diagram while conserving the reciprocity
to its dual.

The method of PTPD is a sequence of geometrical transforma-
tions that reconstruct the geometry of the polyhedral diagram
starting from a sub-part modified by the user. The transforma-
tions are governed by a set of rules that dictate how and in what
order the remainder of the polyhedral diagram is reconstructed
12
to keep its edge directions unchanged. The initial exploration of
this method was presented in [60]. A different implementation
of a similar technique is presented in [48] pp. 92–93 and an
implementation is provided in [50] In this section we will provide
a more in-depth explanation of our method and we will present
the algorithm and its implementation.

PTPD is especially useful for form diagrams where changes
can be operated in order to adapt the diagram to transformed
boundary conditions. The method allows for the change of edge
lengths (whether internal or external) or even for the transforma-
tion of some edges from compression to tension members, within
the limits of reciprocity with the same force diagram. The last
feature needs further exploration and it is not in the scope of
the present paper that deals with compression only polyhedral
diagrams. PTPD is a technique universally applicable to clusters
of polyhedral cells. However, in this paper, beyond explaining the
method, we focus only on a narrow subset of its applications in
the context of graphic statics compression-only polyhedral form
diagrams. The presented examples are meant only to demonstrate
the technique. A more in-depth investigation of PTPD in the con-
text of graphic statics and a broader survey of its capabilities and
limitations (including self-intersecting faces, force diagrams, and
the impact of triangular faces) will be presented in a forthcoming
publication. Additional use case examples within the application
limits presented in the paper can be viewed in [61].

The introduced method allows the user to take one or more
vertices, an edge, or a face of a polyhedral diagram and move
them in space. The movement is generating transformation so-
lutions for the whole polyhedral diagram, so that the newly
transformed edges or faces stay parallel to their original ge-
ometry. For instance, in Fig. 13, the moving faces f(0,1,2,3,4,5),
(0,1,10,9,8,7) and f(0,7,6,5) are the result of the translation of vertex
v0 from position 0 to position 0t . The transformation solution
for a whole polyhedral diagram generated by PTPD starting from
the user input is in fact the process of finding a transformation
path that connects all transformed elements in the polyhedral
diagram. The transformation path is a sequential chaining of
vertex movements where each movement is determined by a
specific movement before it and determines one or more move-
ments after it. This chain of determinations allows for PTPD to
be described as a tree graph spanning the base graph of edge
interconnected vertices in the polyhedral diagram.

In the following sections, we will expand on how PTPD works
and what are the methods and rules for the construction of the
transformation path.

4.1. Single versus multiple vertex inputs

We can consider the root of this tree graph, the first moved

vertex in the polyhedral cluster. If the transformation originates
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Fig. 13. Parallel transformation of polyhedral diagrams (PTPD).
Fig. 14. Single versus multiple point or face input for PTPD.
v
t
m

n multiple vertices, which is also the case when edges or faces
re moved by the user, any vertex from the moved set can
e considered the root. If we are transforming the polyhedral
iagram based on the translation of a single vertex, that vertex,
he root of the tree can be placed anywhere.

The direction of the translation together with the original
opology of the diagram will dictate what other elements from
he diagram will be reconstructed. The magnitude of the trans-
ation together with the original geometry (orientation of edges
ompared to each other) and topology (complexity of vertex
nterconnection) will determine if some edges and faces will flip
heir direction.

Fig. 14 showcases this using a very simple example involving
nly two polyhedral cells, a cube and a prism. This is an important
echanism to understand because it underlines all aspects of
TPD and because it is the base of regarding multiple vertex
nput transformations as single input vertex transformations with
dded constraints for the direction and magnitude of the initial
ertex translation. Fig. 14a shows how moving vertex v0 along

edge e(0,4) is the equivalent of moving face f(0,1,2,3) in the direction
f its normal. But, if we consider further the movement of face
(0,1,2,3), we realize that if we want to move any of the vertices
1, v2 or v3 along vectors that are not parallel with the edges
(1,5), e(2,6) or e(3,7) or with magnitudes different from that of
ector |0, 0t |, we end up with positions for them that are incom-
atible with the base requirement of PTPD, constant orientation
or all edges and faces in the diagram. With this, we can state
hat using any continuous part of a polyhedral diagram (like a
ace or a set of edges) as the start of the transformation, is the
quivalent of moving any of the vertices contained in that part,
ith specific constraints for direction and amplitude and running

he transformation algorithm.

13
To illustrate this, we can look at Fig. 14b where the same
ertex v0 is moved, this time along the edge e(0,1) from position 0
o position 0t . The movement is the equivalent of simultaneously
oving faces f(0,3,7,4) and f(4,8,11,7) while keeping their normal

direction constant. Thus we can regard the movement of a face, an
edge or more generally of certain sets of interconnected vertices
as a particular case of the more general free translation of a single
vertex of the polyhedral diagram.

The scope of this part of the paper is to discuss the mecha-
nisms of this general latter case.

4.2. The main steps of PTPD

According to the user input, the root vertex is moved to a new
location and from it the transformation is followed outwards, in
steps, from vertex to vertex via the edges until all vertices in the
graph have been parsed. After each vertex is processed, a new one
is picked from the un-parsed group from the ones that conform
to the rules of propagation and prioritization. We will explain
and exemplify those rules in the following sections.

Multiple transformation paths exist for any given input on
the same polyhedral diagram. For any un-directed graph there
are multiple spanning trees starting from the same root [62]. In
our case, since at certain steps in the transformation, there are
multiple available vertices that fit the rules mentioned above,
there are multiple transformation paths for any given root. Some
of those transformation paths, depending on the choices made
along the way, can lead to different transformation results. It is
also true that there are cases when path altering choices lead to
the same transformed result. This aspect of PTPD will be the focus

of a forthcoming study and publication.
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Fig. 15. A typical example for a simple parallel geometric manipulation. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
In graph theory terms the process described above is similar to
a Breadth First Search or BFS, with customized rules that prioritize
the available graph edges at every step.

4.3. The transformation rules and a simple example

In order to explain the main mechanisms of PTPD we will use
the example depicted in Fig. 15a through l.

The figure shows the step by step process of transformation
for a typical simple polyhedral diagram consisting of a cluster
of 7 cells. The cells are grouped in one single layer for reasons
pertaining to process visibility. The gray line background plus the
14
gray points and gray notations, refer to the original geometry
of the polyhedral cluster. The black overlay, including the black
dots and the black notations with underscore, refers to the trans-
formed geometry. The blue fill tracks the geometry completed
in the current step. The gray fill refers to the fully transformed
faces completed in the previous steps. At each step the blue ar-
rows show the available expansion choices for the transformation
path. The thick black line overlay depicts the transformation path
walked so far by the process. The thick black lines display at every
step the extent of the spanning tree constructed on top of the
base graph of the polyhedral diagram.
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Fig. 16. Algorithm loop during PTPD.

Before proceeding with the example we must briefly explain
two key concepts (transformation propagation and transforma-
tion prioritization) of the process and define a few supporting
notions. We will refer back to those concepts and notions as we
make our way through the example.

Transformation propagation and transformation prioritization
are in fact two sets of rules. The rules ensure that regardless of the
polyhedral diagram, the starting vertex and the ordering choices
made in spanning the transformation path, the resulting trans-
formed edges will always stay parallel to their original direction.
The first rule set addresses how graph edges are selected for the
expansion of the spanning tree and the second addresses how
they are categorized and prioritized to be included into the tree.

Transformation propagation uses the connectivity of the orig-
inal polyhedron topology to extend the transformation from the
end vertices of the transformation path to all the polyhedral edges
that connect to them, and from there, to all the faces that contain
those edges. By attempting to fully determine those transformed
edges, other yet un-transformed vertices are reconstructed and
thus the transformation propagates further. Moved vertices cre-
ate partial edges (directions anchored in space or rays) and those
edges create partial faces (partially bounded planes in 3d space).
Using ray-ray or ray-plane intersections and a strict set of prior-
ities, the missing vertices from the partial edges are determined
step by step. The creation of those new vertices produces com-
plete (fully determined) edges and faces and produces new partial
edges and partial faces. This is the mechanism that is propagating
the transformation into the polyhedral graph. Fig. 16 offers a high
level overview of the looping mechanism that propagates the
change in the polyhedral diagram.

Transformation prioritization deals with the strict set of rules
involved in the intersection operations that yield new positions
for transformed vertices. The concept essentially dictates the
order in which the intersections available at some point in the
transformation can be processed. Three types of intersections
are identified, each with its own priority. In-face active intersec-
tions refer to line-line intersections between two partial edges.
In-face passive intersections describe intersections between one
partial edge and one original (not transformed) edge. Out-of-face
intersections are intersections between a partial edge and a face
containing the vertex that has yet to be determined. The order of
processing is: in-face intersections, first active and then passive
and finally out-of-face intersections. This ensures that all trans-
formed edges stay parallel to their original direction regardless of
when in the process their vertex positions are determined.

In the example, the transformation starts with the translation
of vertex v0 from 0 to 0t we will call the transformed vertex v0t
(see Fig. 15a). This is the root of the transformation path. Since
the point at 0t is placed inside of a cell and not in any particular
position on a face-plane or along an edge, the only available
intersections for the first step are out-of-face intersections. The
first out-of-face intersection is computed by intersecting partial
edge e(0t ,3t ) with the face plane of f(3,17,19,5) to get the location for
the translation of v3 that is point 3t .

In the next step, pictured in Fig. 15b, the transformation of
v3 in v3t propagates to all edges topologically connected to v3.
From all the potential intersections added, the ones towards v
5
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and v17 can be classified as in-face passive intersections. In the
same Fig. 15b transformed vertex v17t has been added to the
transformation path.

In the next step we have an active in-face intersection. The
intersection occurs between two partial edges pointing towards
a new position for original vertex v14. Both edges are in the face-
plane of partial face f(0t ,3t ,17t ). Since this is the only active in-face
intersection in the wait-list at the moment, we can operate it
and thus get the position for v14t . In the same Fig. 15c another
in-face-passive intersection yields v5t .

In the next images similar operations are shown and the
full transformation of the diagram can be followed using the
highlighted transformation path in thick black line. As the process
progresses, the number of steps shown in each image increases
but the principles stated above remain the same.

The final steps of the transformation are shown in Fig. 15k.
Here, the last vertices are computed and if necessary translated.
Fig. 15l depicts the final form of the polyhedral diagram after all
its vertices have been parsed.

4.3.1. PTPD implementation
The next paragraph presents a description of the actual algo-

rithm for PTPD and a pseudo-code implementation. The algorithm
is written as a modified Breadth First Search (BFS), with multiple
inner loops and an expansion behavior based on the transforma-
tion prioritization rules described above. A high level overview of
the typical workflow is presented in Fig. 16. The essential steps
of the routine are presented in Algorithm 2.

The algorithm works on a graph representation of the polyhe-
dral diagram Γ = (V , E, F ) with interconnected vertices, edges
and faces. The other significant input is V t a set of already
transformed vertices that will determine the transformation in
the graph. The set of pre-translated vertices can also represent
an edge or a face in the polyhedral diagram. The algorithm is
a large while loop containing two functional sections: Section 1
(lines 5 to 23) deals with gathering and sorting partially trans-
formed faces from transformed vertices and Section 2 (lines 24 to
42) with processing each partially transformed face through ap-
propriate edge intersections to yield more transformed vertices.
Special notations: Superscript t denotes a transformed vertex,
or a partially transformed edge or face. Subscript t used on the
subscript notation of an edge or face, like et(it ,j) denotes that a
particular vertex in the edge or face is transformed.

The first section works by establishing all the connected faces
to the transformed vertices in V t . Those faces are all stored in F t .
Subsequently all faces in F t are parsed and based on the internal
configuration of un/transformed vertices and edges the appropri-
ate collection is chosen for the face: F a active in-face intersec-
tions, F p passive in-face intersections, F o out-of-face intersection
or F c for the fully transformed faces with no available intersec-
tion. The choice is made according to the rules of transformation
prioritization presented in the previous paragraph.

After the first section, a check is performed to see if faces
with intersections are still available to be processed in any of
the specialized collections. If that is not the case the Boolean
variable controlling the main while loop is set to false. The second
section contains specialized parts for working with each of the
three collections of transformable faces. The processing order is
the actual transformation prioritization.

First, the active intersection faces are processed (line 24–31).
Since active intersections have the highest priority, all faces in the
collections can be parsed. If the face has an active intersection
then it should contain two partially transformed consecutive
edges et(it ,j) and et(j,kt ) where vj is the yet un-transformed common
vertex. The new position for vj is found through the intersection

t
of the two edges. The resulting transformed vertex is added to V .
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O

Fig. 17. PTPD example of a transformation of a form diagram.

nce all active intersection faces are processed F a is emptied and
the rest of the while loop is skipped. This makes sure that if vt

j
Second, passive in-face intersection faces are processed (lines

32–37). This happens only if there are not any active inter-
section faces left. Only one intersection is computed and the
current while cycle is skipped. This accounts for any new active
intersection faces that might appear. A passive intersection is
computed between a partially transformed edge et(it ,j) and an un-
transformed one e(j,k) sharing a vertex vj. The new position for the
common vertex is added to V t .

Out-of-plane intersection faces (lines 38–42) are processed
last in this section and just like passive in-face intersections, at
most one intersection is computed per while loop. The out-of-
plane intersection requires one partially transformed edge e(it ,j).
Since no sufficient data exists in the face to compute the other
vertex of the edge, vj, the intersection is computed between the
edge and another face containing vj in the graph G. The resulting
transformed vertex vt

j is included in V t . The loop ends when
all the faces connected to vertices in V t are processed and the
newly transformed vertices already belong to completed faces
thus producing no other partially transformed faces.

Another example of PTPD used on a bridge-like form diagram,
where it is transformed using parallel transformation tool in
several steps as shown in Fig. 17a-d. In Fig. 17a points 1 and 2
are moved to the transformed positions 1t and 2t . Based on the
mentioned rules of PTPD (see Section 4.2), the target geometry
including the transformed diagram is visualized in light gray
before the completion of the operation as shown in Fig. 17a,b.

Similarly in Figs. 17b and c, the movement of points 3, 4 and
5 further transforms the diagram in to its final configuration of
Fig. 17d. One of the advantages of using this method is the direct
sculpting the polyhedral forms for design purposes. Besides, this
parallel transformation can be paired with some analytical ap-
proaches to inform the user of certain performative aspects of the
changes made into the form by using this method. For instance,
the buckling capacity of the members may change and can be
tuned using this function.

The colors of the members in all instances correspond to the
relative buckling capacity of the members calculated using Euler’s
critical load formula for a filled circular cross section [63]. The
cross sections are sized according to the area of their correspond-
ing faces in the force diagram. The values for all configurations
are normalized (≤1). As presented in the figure change in the
geometry of the form affects its buckling performance. The user
can manually change the geometry to adjust long members to
sculpt the diagram while observing the buckling performance of
the system. This property can be paired with volume calculation
for load-path optimization of the structural forms.
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Algorithm 2: Geometric graph transformation
Data: Γ = (V , E, F ) graph of the polyhedral diagram

where vi ∈ V , ei,j ∈ E and fi,j,k.. ∈ F ; V t a set of
translated vertices; F a, F p, F o, F c empty sets of
active, passive, out-of-face and complete faces

Result: Γ c
= (V c, Ec, F c) completely transformed graph

1 begin
2 while |F a

|+|F c
|+|F o

|> 0 do
3 F t # store transformed faces
4 for vt

i ∈ V t do
5 F t

←− F t
vi

# set of faces connected to vi

6 end
7 for f t ∈ F t do
8 if ∃ vx ∈ f t # f has transformable v then
9 if vt

i ∈ Pf # vt
i in original face plane Pf

10 then
11 if ∃ et(it ,j) & ∃ e

t
(kt ,j) ∈ f t(it ,j,kt ...) then

12 F a
←− f t(it ,j,kt ..)

13 end
14 if ∃ et(it ,j) & ∃ ek,j ∈ f t(it ,j,k..) then
15 F p

←− f t(it ,j,k..)
16 end
17 else
18 F o

←− f t(it ,j,k..)
19 end
20 else
21 F c

←− f t(it ,jt ,kt ..)
22 end
23 end
24 if |F a

|> 0 then
25 for f t(it ,j,kt ..) ∈ F a do
26 et(it ,j) ∈ f t(it ,j,kt ..) & et(kt ,j) ∈ f t(it ,j,kt ..)
27 V t

←− et(it ,j) ∩ et(kt ,j)
28 end
29 F a

←− ∅ # empty F a

30 continue # skip rest of loop
31 end
32 if |F p

|> 0 then
33 f t(it ,j,k..) ←− F p

[0] # extract from set
34 et(it ,j) ∈ f t(it ,j,k..) & e(k,j) ∈ f t(it ,j,k..)
35 V t

←− et(it ,j) ∩ e(k,j)
36 continue # skip rest of loop
37 end
38 if |F o

|> 0 then
39 f t(it ,j,k..) ←− F o

[0] # extract from set
40 et(it ,j) ∈ f t(it ,j,k) & f(j,v,w..) ∈ F
41 V t

←− et(it ,j) ∩ f t(j,v,w..)
42 end
43 end
44 end

5. Implementation of the algorithms as a Rhino3d plug-in

The algorithms presented in this paper have been imple-
mented as an add-on for the Windows version of the
Rhinoceros3d popular CAD platform. The plug-in is called
PolyFrame and introduces a number of 7 Rhino commands that
cover the workflows described in Fig. 3 and in Fig. 16. Fig. 18
shows the toolbar that our plug-in introduces in the Rhino
work space. For a more in-depth description of the available
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Fig. 18. An image of the toolbar introduced by PolyFrame in the workspace of
Rhino.

commands, options and workflows, please refer to the PolyFrame
Manual [64]. The PolyFrame plug-in contains the PolyFramework
API which is the core library of the add-on as a separate DLL file.
The API can be referenced in any scripting environment of Rhino
or in its visual scripting environment Grasshopper. A fully-fledged
PolyFrame add-on for Grasshopper has not yet been released.

The first four commands implement the iterative workflow
for the construction of reciprocal polyhedral diagrams detailed in
Section 3.

The first command in the toolbar is PFBuild. The command
can create a polyhedral diagram (referred to as a polyframe in
the context of the plug-in) from native Rhino geometry presented
as surfaces. The command interprets the raw geometry, removes
duplicates, repairs overlaps, disconnects and finally creates the
data structure. The data is saved back in the Rhinoceros document
together with the cleaned geometry to be used by the other tools.
The polyframe data is saved with the Rhino geometry.

The second command PFDual constructs the dual polyhedral
diagram for an existing diagram in the Rhino viewport. The dual
is a polyframe that has a topological connection to the primal
diagram as described in Section 2.6, but it is not reciprocal to it
yet.

Reciprocity between dual diagrams can be achieved using the
third command in the toolbar PFPerp. Through the command-
line interface the constraint-based manipulations presented in
Section 3.4 can be imposed. The specifics of the algorithms of the
command are presented in Section 3.5.

PFPlanar is the fourth tool in the toolbar and it used to enforce
face planarity in a polyhedral diagram. Similar to the PFPerp it
can attempt to planarize the provided diagram while enforcing a
number of user specified constraints, introduced through options
present in the command-line interface of the tool. The specifics
of the algorithms of the command are presented in Section 3.6.

The next two commands PFSwitch and PFPipe are utility tools
used mainly for visualization purposes. PFSwitch can change the
Rhino geometry used to visualize any polyhedral diagram. Each
diagram can be viewed and stored in the Rhino document as
a group of edges, face or cells. Faces and cells can be either
Rhino surfaces or Rhino meshes. PFPipe is a special visualization
command dedicated to form diagrams. For each internal edge of
the form diagram a pipe is created. The length of the pipe is equal
to the edge’s length and its width is proportional with the area
of the correspondent dual face present in the force diagram.

The last command in the toolbar PFTransform implements
the algorithm for parallel transformation presented in Section 4.
Starting from any polyhedral diagram the user can pick a vertex
and move it, thus transforming the diagram according to the rules
of PTPD. For now this tool is implemented only as a proof of
concept and the full possibilities of the algorithm will be made
available in a future release.

6. Limitations and future work

This paper introduced a new and improved framework for
the efficient computation of 3D graphic statics based on recip-
rocal polyhedral diagrams applicable to compression-only spatial
17
structural form finding. The framework is limited to working
with planar convex faces. The framework is based on a new
data structure capable of handling large diagrams with thou-
sands of cells and tens of thousands of faces and edges. The
reciprocal construction algorithms can speed up the constraint-
based form finding process compared to the methods introduced
by Akbarzadeh et al. [31]. We also compared our implementation
with the 3D graphic Statics add-on for Grasshopper by Graovac
[51] and found that raw perpendicularization speed is similar.
However we the add-on has no cell finder and needs perfect poly-
hedral input to produce a dual/reciprocal diagram. Additionally
the perpendicularization process does not accept any constraints
so the tool cannot be employed for any practical use. Comparisons
with another solution proposed by Lee [48] were not possible as a
working version for compas_3gs was not available on the compas
repository at the time of writing this paper.

The robustness and the efficiency of the algorithms provided
in this paper extend the ability to explore the limits of reciprocity
between polyhedral diagrams with multiple geometric degrees of
freedom. The framework is especially useful for scenarios with
low geometric degrees of freedom where partial solution can still
be found.

Additionally, the paper has introduced a new method of par-
allel transformation for the polyhedral diagrams without recon-
structing the reciprocal diagrams. This method facilitates the
transformation of any cluster of polyhedral cells, based on the
user input, while preserving the edge directions of the diagram.
This allows for almost instantaneous, near real-time transforma-
tions of a polyhedral diagram within the limits of its geometric
degrees of freedom. As mentioned, the presented framework
has been released as an extension for the modeling software
Rhinoceros [55] and is called PolyFrame. This plugin can be freely
downloaded [54]. Since its release in 2018, the plugin has been
used in extensively in research and education [39,40,65–68].
Fig. 19 shows a selection of design research works produced by
using this plugin at the Weitzman School of Design, University of
Pennsylvania. What is presented in the images exceeds the strict
context of the paper and the cantilever structures shown in the
models are in fact the section from an original design and should
not be mistaken as a compression-only structural form.

Note that in all examples, the external loading scenario was
used as a dominant loading condition. Besides, loading on the
structure’s internal nodes is not possible using the methods
explained in this paper. Moreover, some cases contain lateral
loading in their design stage, where later in the real structure was
removed. This removal of the external loads will result in chang-
ing the direction of the internal force in some peripheral mem-
bers from compression into tension, which is an existing
limitation of the current tool. In sum, the main point of presenting
these examples is to emphasize the level of articulation a designer
may achieve using this paper’s proposed tool.

The introduced research and the presented framework are
opening new avenues of research into 3DGS through reciprocal
polyhedral diagrams. This framework can be extended for form
finding with combined compression and tension forces by either
including the self-intersecting faces in the geometry of the force
and form diagrams or by flipping the direction of the edges in the
form to represent tensile members [43,69].

At the moment, no reliable method exists for the determi-
nation of a solution space defined by a reciprocal relationship
between polyhedral diagrams. As a result it is impossible to
determine if an iteratively found reciprocal solution is a global
optimal solution. We believe that the research introduced in
this paper is a step towards this goal. Section 3.8 delineates the
connection between the complexity of the diagram and the time

required to find the solution. It also shows that the number of



A. Nejur and M. Akbarzadeh Computer-Aided Design 134 (2021) 103003

s
s
t

Fig. 19. A collection of architectural structures designed by students. Works developed by using the PolyFrame plugin and the algorithms presented in this paper
(Photo credits: PSL). Some of these design exercises show a section of the structure which should not be interpreted as a cantilever system.
elements (edges, faces) in a diagram has less of an impact on
its perpendicularization times (time to find the solution) than
its type of topological interconnections and specific geometry. In
an upcoming research we will investigate this connection that
we believe is very well described by the number of Geometric
Degrees of Freedom (GDoF) a diagram has.

A more thorough set of tests and a comparison with other
oftware packages that tackle similar tasks such as 3DGS exten-
ion presented in [48] and [49], will help to gather relevant data
owards this goal.
18
We speculate that the number of elements in a diagram de-
fines the search space for a reciprocal solution while the GDoF of
the diagram is a measure of the solution space where the same
reciprocal diagram can be found. Once a better understanding
of this relationship is developed, a machine learning algorithm
or a genetic optimization algorithm could help predict better
solutions with smaller deviations within the limits of any given
connected diagrams.

Moreover, further investigation is needed to enhance the user
control, particularly for the parallel transformation algorithm.
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he parallel transformation algorithm can also be improved by
onsidering multiple transformation paths simultaneously as well
s considerations that could result in topological changes in the
rimal or dual diagram.
Finally a skin generating algorithms based on implicit and

xplicit modeling will be implemented for the visualization and
abrication of form diagrams with member sections proportional
o the face areas in the force diagram.
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