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Abstract
This paper presents procedures to generate tetrahedral truss topologies as an input form for polyhedral
graphic statics and develops an algebraic formulation to construct their force diagrams. The recent al-
gebraic 3D graphic statics constructs reciprocal polyhedral diagrams with either form or force as input.
However, the input is usually a set of polyhedrons or self-stressed networks. Another implementation
of polyhedral graphic statics includes general truss topologies. Nevertheless, the starting geometry is
usually the global force diagram and based on its modification or subdivision, a form is constructed.
Therefore, currently, there exists no formulation to analyze a spatial truss using polyhedral graphic stat-
ics. This paper develops an algorithm to build upon the algebraic 3D graphic statics formulation to
construct the force diagram and analyze spatial trusses that are not self-stressed structures. The article
also shows how the proper definition of the external spaces between the applied loads and reaction forces
and the tetrahedral subdivision of the truss make it possible to construct the reciprocal force diagram.

Keywords: 3D graphic statics, reciprocal polyhedral diagrams, algebraic formulation, space truss.

1. Introduction
The polyhedral graphic statics is based on Maxwell’s principles of reciprocal diagrams and Rankin’s
extension to polyhedral reciprocals [1–3]. As opposed to vector-based 3D graphic statics [4–7], the
form and force diagrams are fully reciprocal polyhedrons, and a closed force polyhedron demonstrates
the equilibrium at each node. The area and the normal vector of faces in the force polyhedron determine
the force magnitude and force type of its reciprocal member in the form diagram. Akbarzadeh et al. have
clarified and illustrated Rankin’s propositions of polyhedral reciprocal diagrams [8, 9]. Although the
contribution is relatively recent, it has shown potentials for form-finding and design of spatial structures
[10–14]. Also, a handful of computational techniques exists to generate the dual diagram, provide algo-
rithms for manipulation of form and force polyhedrons, and create force visualizations by geometrical
summations of the dual diagrams [9, 15–22].

1.1. Problem statement and objectives
Limitations exist regarding the type of input geometries the computational methods of polyhedral graphic
statics can handle; the algebraic 3D graphic statics constructs the dual polyhedral diagram with either
form or force as input [19, 20]. However, the input is usually a set of closed polyhedrons or a self-
stressed network. Similarly, the examples for constructing dual diagrams using projective geometry and
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Airy stress functions have also been restricted to self-stressed topologies [17, 23]. More general spatial
truss typologies, with vertical loads and reaction forces, are covered in [11, 24]. Nevertheless, the input
geometry is usually the global force diagram and based on its modification or subdivision, a form is
constructed. Furthermore, the PolyFrame and 3D Graphic Statics plugins for Rhino and Grasshopper
only work with compression- or tension-only structures [21, 22]. Therefore, currently, there exists no
formulation to analyze a spatial truss with both compression and tension members using polyhedral
graphic statics.

This paper intends to develop an algebraic formulation to analyze spatial truss systems using polyhedral
graphic statics. The algorithm builds upon the algebraic 3D graphic statics [19] to construct the force
diagram for tetrahedral geometries that are not self-stressed structures. The article shows how creating
a proper datastructure (using the correct definition of the external spaces between the applied loads and
reaction forces and the tetrahedral subdivision of the truss) makes it possible to analyze the truss and
construct the reciprocal force diagram. The study’s ultimate goal is to extend the authors’ previous
research in 2D [25, 26] to generate 3D strut-and-tie models and stress fields for reinforced concrete
design.

2. Methodology
As mentioned, the algebraic implementation of polyhedral graphic statics [19] can construct the dual
diagram, given an input primal (form or force) diagram. However, the input truss topology should be a
closed or a self-stressed network, and this is not practical for the analysis of most spatial trusses. This
section provides the steps for constructing the force diagram for a tetrahedral truss and explains how
the algebraic equations help calculate edge lengths of the force diagram. To clarify the procedure of
constructing the force diagram for a spatial truss, we first explain the notation used in 2D graphic statics,
then extend it to the 3D version.

2.1. Notation and reciprocity in 2D graphic statics
Fig.1 shows an example of a simple 2D truss (form diagram) with vertices 0-5, faces A-C (i.e., the 2D
subspace assignments), and edges (0,1), (1,2), etc. The open external faces are shown with dashed
lines. The internal vertices 1-3, edges and faces of the form are respectively reciprocal to the faces 1-3,
edges, and vertices A-C of the force diagram. The closed polygons in the force diagram show the external
and nodal equilibrium of forces (Fig.1c). To construct the force diagram, first, the global force polygon
showing the external equilibrium is made by looping the external faces A-B-C-A and drawing the vectors
parallel to vectors (0,1), (5,3) and (4,2) that separate these faces (Fig.1c-left). The length of vector AB
in the force diagram is proportional to the applied load, and the magnitude of the support reactions and
truss member forces will be defined based on this proportion after the completion of the force diagram.
Once the topology of the global force polygon is known, the rest of the force polygons for each nodal
equilibrium can be drawn by traversing the faces surrounding each vertex in the form and drawing lines
parallel to edges shared between these faces until a closed polygon is formed. For example, for vertex
1 in Fig.1a, looping faces A-B-D-A around node 1 leads to construction of polygon ABD in Fig.1c. The
process continues for all other internal vertices till the force diagram is completed (Fig.1b). The edge
vectors in each force polygon assure a closed loop, and the sharing edge vectors between two neighboring
faces always have opposite directions. The type of forces can be defined using the edge vectors [27]. For
example, assume vertex 1 and edge (2,1) in Fig.1a and their corresponding polygon 1 and edge DA in
Fig.1c, the vector DA goes from D to A and this is towards vertex 1, so edge (1,2) is in compression.
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Figure 1: (a) 2D truss (form diagram); (b) 2D force diagram; (c) global force polygon (left), nodal force polygons
(middle and right).

2.2. Polyhedral graphic statics for tetrahedral trusses
The notation in polyhedral graphic statics can be seen as an extension of the 2D notation. The 3D
subspace assignments (i.e., cells) are defined through faces as opposed to the edges in 2D. Fig.2a-c shows
an example of a spatial truss (form diagram) with vertices 0-7, faces, cells A-E, and edges (0,1), (1,2),
etc. The internal vertices 1-4, edges, faces, and cells in the form diagram are respectively reciprocal to
the cells 1-4, faces, edges, and vertices A-E of the force diagram (Fig.2a and f). In polyhedral graphic
statics, the faces are required to be planar. The tetrahedral truss typologies of this paper, following a
triangulation rule, assure the stability of the form and the planarity requirement of faces between the
truss members. The closed polyhedrons in the force diagram show the nodal equilibrium of forces at
each truss internal vertex (Fig.2f). Each edge in the form is parallel to its reciprocal face normal in the
force and vice versa. The area of the faces in the force diagram equals the magnitude of the forces in the
truss members.

2.2.1. Construction of polyhedral force diagram
The steps of constructing the polyhedral force diagram, given a spatial truss in Fig.2a is clarified as
follows: (i) Define faces and cells: in 2D, the faces are assigned based on the edges that separate them;
in 3D, the cells are created after the faces are appropriately defined (Fig.2b and c). The faces should be
planar, and the neighboring faces share one edge. The defined cells should not intersect, and neighboring
cells share one face.

(ii) Construct the load face: like 2D, the first step is to construct the global force polyhedron showing the
external equilibrium. For that, the face reciprocal to the load edge (0,1) is created first. The topology of
the load face ABC is discovered by traversing cells A-B-C-A around edge (0,1) and drawing the normal
vector of the faces separating these cells (Fig.2d). The normal vectors with proper lengths (the area of
the face is proportional to the load magnitude) form a closed face ABC, and this face is perpendicular
to the load edge (0,1). The edge vectors of the face define the face cycle, and the direction of the face
normal n(0,1) is assigned based on the right-hand rule. The direction of the face normal, and therefore
the face cycle should agree with the load direction.

(iii) Construct the global force polyhedron: the faces reciprocal to reaction edges (2,5), (3,6), and (4,7)
can be created similarly. Since the reactions are unknown, their directions can be discovered using the
known edge vectors of the load face (Fig.2e-top). For example, face ACE reciprocal to reaction (2,5)
shares edge AC with the load face ABC. Edge AC in ACE should have an opposite direction. The other
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Figure 2: (a) Space truss (form diagram); (b) face definition; (c) assigned external and internal cells; (d)
constructing the load face; (e) constructing the global force polyhedron; (f) force polyhedrons showing

equilibrium at nodes 1-4 and the completed force diagram; (g) defining the force type for edge (2,1); (h) force
types (blue:compression, red:tension); (i) force visualization.

edge vectors of this face (i.e., CE and EA) are defined based on the direction of AC to form a closed
polygon (Fig.2 e-middle). Based on the cycle and normal n(5,2) of face ACE, the direction of the reaction
force is defined. The reaction force magnitude is proportional to the area of face ACE. The two other
load faces can be constructed similarly. Eventually, the four faces (ABC, ACE, and AEB, and BEC) form
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a flat global force polyhedron shown in Fig.2e-bottom.

(iv) Construct the complete force diagram: the same procedure is applied to the remaining edges of the
form to construct the rest of the force diagram’s faces. Ultimately, for each nodal equilibrium (at vertices
1-4) a force polyhedron (i.e., a cell) is produced, and the force diagram is completed (Fig.2f). The truss
member forces will be proportional to the face areas in the force polyhedrons.

(v) Define the type of forces: to determine if the truss member forces are in compression or tension, the
cycle of faces in each force polyhedron should be specified. For example, the force polyhedron related
to equilibrium at vertex 1 in Fig.2g, shares face ABC with the global force polyhedron, and the face cycle
should be preserved. Now that edge vectors in ABC are known, cycles of its neighboring faces CBD,
BAD, and ACD can be specified. As an example, face CBD shares edge BC with face ABC, but their
vectors should be opposite. Based on this flipped vector, the cycle of face CBD can be defined. Face
CBD is reciprocal to edge (1,2) and it is in compression since the normal n(1,2) is towards node 1. The
cycles of other faces in cell 1 and the type of forces for the rest of the members at node 1 can be specified
similarly.

(vi) Force visualization: the proportional magnitude of forces in each truss member can be illustrated by
the geometrical summation of the form diagram and a down-scaled force diagram using the Minkowski
sum [15, 24, 25].

2.2.2. Algebraic implementation
The explained procedure is implemented in a computational setup with algebraic equations to calculate
the dual edge lengths and construct the force diagram. After defining the truss geometry and faces, the
datastructure is built using PolyFrame [21]. The load faces are constructed using algebraic equations for
2D polygons. Since the load faces are closed polygons, sum of the edge vectors of each load face has to
be the zero vector. Thus, each load face provides a vector equation:

∑
e j

u jq j = 0 (1)

where e j are the edges of the load face, u j are their direction vectors, and q j are the variables representing
the edge lengths for e j. These equations can be written for every load face, and the topology of the load
faces can be described through a [2 fl × el] matrix Al , with fl the number of load faces in the force
diagram, and el the total number edges for the load faces [28, 29]:

Alql = 0 (2)

where ql is the [el ×1] vector of edge lengths for the load faces. The solutions of Eq.2 can be obtained
using the Moore-Penrose Inverse (MPI) A+

l of Al [30, 31]:

ql = (I−A+
l Al)ξ (3)

where A+
l is a [el ×2 fl] matrix, I is the [el × el] identity matrix, and ξ is any [el ×1] vector. We choose

ξ to be the [el ×1] vector of ones to achieve ql with well-distributed edge lengths [19, 32]. As clarified
in the previous section, as soon as the load face is known, the topology and cycles of reaction and other
faces can be specified, so the edge lengths for the rest of the force diagram can be calculated. Similar
formalism can be applied in constructing the complete force diagram in three-dimensional space [19].
The topology of the force diagram with f faces and e edges can be described by a [3 f ×e] matrix A, and
Eq.4 imposes the condition of closed face polygons in the three-dimensional space:

Aq = 0 (4)
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where q is the [e×1] vector of all edge lengths. The calculated edge lengths for the load faces from Eq.3
impose extra constraints. Each load face edge ei with a predefined length qi provides a vector equation:

lTi q = qi (5)

where li is the [e×1] column vector whose entries are all zero except at the index of ei where it is one.
Together with Eq.4, we obtain a linear equation system describing the topology of the force diagram with
predefined edge lengths for the load faces:

Bq = b (6)

where matrix B is obtained by stacking matrix A and row vectors lTi , and vector b is obtained by stacking
a zero vector with the known edge lengths qi [20, 26]. The solutions of Eq.6 can be described as:

q = B+b+(I−B+B)ω (7)

where B+ is the MPI of B, I is the [e × e] identity matrix, and ω is any [e × 1] vector. Again, we
choose ω to be a vector of ones to obtain a solution q with well-distributed entries. After solving for q,
which includes all the edge lengths, the force diagram can be constructed using a graph search method
explained in [19]. The magnitude and type of forces can then be discovered.

3. Examples
The force diagram, force types, and force visualization for the examples of this section are calculated
with the computational implementation explained in the previous section. The examples here are limited
to tetrahedral truss geometries with vertical loads and reactions. Also, the trusses do not have any internal
nodes, i.e., there is either a load or support at each node. Moreover, the loads do not cantilever outside
the space surrounded by reactions’ line of actions (this avoids having complications in making the load
faces or having self-intersecting faces in the force diagram, which is out of the scope of this paper).

Fig.3a shows a tetrahedral truss with four supports. To keep the faces triangulated and the form stable,
a diagonal truss member is added to the bottom face between the supports. As a result, two internal
orange cells are created in Fig.3c. By increasing the number of loads and supports, more options exist
for triangulation of the form. Some options for the case of two loads and four supports are shown in
Fig.4. It should be noted that the configuration of the three diagonal members in Fig.4d results in a
single internal cell. The external symmetry between loads and supports in Fig.4a-d results in zero areas
and therefore zero forces in the diagonal members, as the solution for Fig.4a illustrates in Fig.5. The
diagonal members act as bracing to stabilize the form, but do not participate in the equilibrium of the
forces.

The force diagram can also be generated for non-symmetrical scenarios with several loads and supports,
as long as the faces are kept planar. In the example of Fig.6, to assure planarity, each load should be
connected to at least three supports. One application of force visualization (i.e., Minkowski sum of form
and force diagrams) in Fig.6e can be the depiction of discontinuous stress fields for a block of continuous
material like reinforced concrete if the generated form is considered a 3D strut-and-tie model [15, 26].

4. Conclusion and outlook
The paper shows that the algebraic formulation of polyhedral graphic statics can be utilized to analyze
spatial trusses. The step-by-step procedure for constructing the polyhedral force diagram is explained,
and the algebraic equations for calculating the edge lengths of the force diagram are provided. Although
the input geometries can include typologies that are not self-stressed, the current computational imple-
mentation is restricted to specific geometries; the input truss has a tetrahedral shape to avoid non-planar
faces. The truss does not have any internal nodes, i.e., there is either a load or support at each node.
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Figure 3: (a) Space truss (form diagram); (b) face definition; (c) assigned external and internal cells; (d) load face,
complete force diagram, and nodal force polyhedrons; (e) force types (blue:compression, red:tension); (f) force

visualization.

(a) (b) (c) (d)

Figure 4: Triangulation solutions for the case of two loads and four supports.

(a) (b)

(e) (f)

(c)

(d)

Figure 5: (a) Space truss (form diagram); (b) face definition; (c) assigned external and internal cells; (d) load
faces, complete force diagram, and nodal force polyhedrons; (e) force types (blue:compression, red:tension); (f)

force visualization.

7



Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structures
Inspiring the Next Generation

(a) (b)

(e)(c)

(d)

Figure 6: (a) Space truss (form diagram); (b) face definition; (c) load faces, complete force diagram, and nodal
force polyhedrons; (d) force types (blue:compression, red:tension); (e) discontinuous stress fields for a reinforced

concrete block.

Moreover, this article does not include examples with cantilever loads or reaction forces and loads of
various angles.

As the ultimate goal of this study is to generate strut-and-tie models and stress fields for design and
analysis of reinforced concrete elements, the future work is focused on the following: (i) automatic
generation of the tetrahedral trusses accounting for the concrete design domain and locations of external
loads and supports, (ii) adjusting the areas of the load faces in accordance to the magnitudes of the
applied loads, and (iii) modification of the initial geometries by increasing the resolution (i.e., adding
internal nodes or members).
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