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ABSTRACT
In this paper, we propose a geometry-based generative design method to generate and 

optimize a floor structure with funicular building members. This method challenges the 

antiquated column system, which has been used for more than a century. By inputting 

the floor plan with the positions of columns, designers can generate a variety of funicular 

supporting structures, expanding the choice of floor structure designs beyond simply 

columns and beams and encouraging the creation of architectural spaces with more 

diverse design elements. We further apply machine learning techniques (artificial neural 

networks) to evaluate and optimize the structural performance and constructability of the 

funicular structure, thus finding the optimal solutions within the almost infinite solution 

space. To achieve this, a machine learning model is trained and used as a fast evaluator 

to help the evolutionary algorithm find the optimal designs. This interdisciplinary method 

combines computer science and structural design, providing flexible design choices for 

generating floor structures.
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Figure 1. History of concrete structure 
roof. Image credit to the designers. 
From top left to bottom right: a) 
Riverside Church; b) Lanificio 
Gatti; c) Palazzo del Lavoro; d) 
floor design from Block Research 
Group; e) Zoology Lecture Hall at 
the University of Freiburg; f) Dfab 
House.

INTRODUCTION

Background

The Maison Domino was invented more than 100 years ago 

by Le Corbusier (Anderson 1984) and is still widely used 

in open floor-plan designs. The column supports the beam 

while the beam supports the ceiling, which covers the main 

space.

However, with the development of computational design 

techniques, a new possibility is emerging: A funicular arch 

structure can replace columns and beams. Recent devel-

opments and explorations in funicular arch structure 

from Rafael Guastavino, floor design from Philippe Block 

(Adriaenssens, Block et al. 2014), and reinforced concrete 

from Luigi Nervi have brought out new aesthetics and the 

possibilities of more economical structure systems (Figure 

1).

Graphic Statics

In the design of the funicular arch structure, the graphic 

statics method is widely used to evaluate and generate 

the force and form. Graphic statics (2D/3D) is a geom-

etry-based structural design and analysis method. The 

history of graphic statics can be traced back to the 

Hellenistic Age, when Archimedes used algebraic formulas 

and illustrations to explain in his book On the Equilibrium of 

Planes that the weight of an object is inversely proportional 

to the distance under equilibrium conditions in the law of 

levers.

The Renaissance was the beginning of modern mechanics. 

Galileo Galilei, Robert Hooke, and Isaac Newton made great 

contributions to the scientific development of mechanics. 

Specific to graphic statics, mechanics contains three 

important factors: Forces are represented as vectors, 

forces can be composed and decomposed, and a balance 

of forces can be achieved under equilibrium conditions. In 

1586, Simon Stevin proved the parallelogram rule of the 

decomposition and synthesis of forces with the load test 

on the inclined plane, pioneering the use of geometry to 

find the equilibrium of forces (Stevin 1586). In 1864, after 

systematically reviewing and expanding the field’s knowl-

edge, Karl Culmann named this subject “graphische Statik” 

(graphic statics) in his book Die Graphische Statik (Culmann 

1864), which was widely accepted by the academic commu-

nity. Graphic statics was then formally established with 

the successful follow-up research in 2D graphic statics 

(Maxwell 1864, Maxwell 1870, Bow 1873, Cremona 1890).

However, 2D graphic statics has its own limitations 

(Akbarzadeh 2016); only 2D abstractions of 3D structures 

could be designed, although Culmann also proposed a 3D 

solution of graphic statics (Culmann 1864), which was 

never explained and proved in detail in his book. Maxwell 

applied this 3D method to a specific case of geometric oper-

ation (Maxwell 1864), but the complex calculations stopped 

him from further research in 3D graphic statics, and this 

theory has been left intact since 1864.

But with the recent development of computing power, the 

complex geometric calculations of 3D graphic statics can 

be now performed through digital computation. Thus, 3D 

graphic statics has attracted the attention of researchers 

again. Aided by computers, architects developed digital 

algorithms to generate 3D forms from 3D force diagrams 

(Theodoropoulos 2000, Block and Ochsendorf 2007, Van 

Mele, Lachauer et al. 2012, Fivet and Zastavni 2013, Stouffs, 

Janssen et al. 2013, Van Mele and Block 2014, Akbarzadeh, 

Van Mele et al. 2015, Bolhassani, Akbarzadeh et al. 2018). 
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Figure 2. 2D versus 3D funicular 
solutions and their corresponding 
force diagrams, by Akbarzadeh et 
al. (2016)

The computational solution of 3D graphic statics helps 

designers generate 3D polyhedral forms by manipulating 

force diagrams with given boundary conditions.

In the form finding of 3D graphic statics, the transformation 

rules from force diagrams to form diagrams work much 

as they do in 2D. Figure 2 shows the comparison of 2D and 

3D graphic statics, where Figures b) and d) are the force 

diagrams and Figures a) and c) are the form diagrams. 

Each applied load “Fi” in the force diagram represents a 

corresponding load force “Fi” in the form diagram, with the 

two perpendicular to each other. Each exterior supporting 

force “Fei” in the force diagram results in a structural 

member “ei” in the form diagram, which shows the corre-

sponding form of a force diagram. But the difference is that, 

in 2D graphic statics, the forces are drawn as lines, while, 

in 3D graphic statics, the forces are represented as planar 

surfaces, so the forces and the corresponding forms in 3D 

graphic statics have one more dimension than the forces 

and forms in 2D graphic statics.

By generating or adjusting the polyhedral force geometries, 

different funicular forms can be provided using 3D graphic 

statics. The advantage of this form finding algorithm is that 

the generated structures are always in equilibrium under 

a given boundary condition. As long as the force diagram 

is a set of closed polyhedrons, the corresponding form can 

stay balanced under the action of applied forces. Therefore, 

when designing a form with given applied loads, architects 

can divide the force polyhedrons with additional interior 

faces to achieve complexity while maintaining the form 

equilibrium.

Machine Learning

Besides the focus on 3D graphic statics, the interest in the 

application of machine learning to design and optimization 

has increased considerably (Zheng 2019, Showkatbakhsh, 

Erdine et al. 2020).

For example, a machine learning model can be trained to 

classify images of geometries based on the architect’s 

aesthetic tendency (Turlock and Steinfeld 2019). Examples 

of the funicular structures are translated into black and 

white spatially distinguished images then used to train a 

convolutional neural network (CNN) model. The authors 

randomly generate a large number of structural models, 

flatten them into images, and then ask volunteers if they 

think the images are beautiful. By this method, the trained 

CNN can learn the aesthetic indicators in the sense of 

architecture based on the answers of the volunteers. 

Combined with the traditional structural evaluation indica-

tors, the program can find a solution that is evaluated to be 

both beautiful and structurally stable.

Furthermore, neural networks can be used to solve the 

computational problem in the field of structural optimi-

zation (Aksöz and Preisinger 2019). The authors use an 

artificial neural network (ANN) to learn the stress condi-

tions and coping methods in finite element analysis, then 

use the generated sample data to train the neural network, 

and finally apply the trained neural network to generate 

structure solutions based on the stress conditions given 

by the user. In order to simplify the problem, the authors 

divide the complex structure system into small units, and 

the overall structure is composed of each small unit opti-

mized by the ANN. Similarly, the structural computation 

process is optimized by training ANN models (Yetkin and 

Sorguç 2019), but the optimization is applied to small truss 

structures.

Problem Statement and Objectives

In this paper, we aim to answer the following questions: 

1) how to integrate the novel strategies in structure and 

computation and develop a digital process that could 

translate and optimize the routine structure system into 

funicular structure as another design option for archi-

tects; and 2) how to re-define and optimize the construction 

module using machine learning techniques.

Therefore, in this research, we propose a geometry-based 

generative design method to generate and optimize a floor 

structure with funicular building members. This method 

challenges the antiquated column system, which has been 
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used for more than a century. By inputting the floor plan 

with the positions of columns, designers can generate a 

variety of funicular supporting structures, resulting in 

more choices for designing a floor structure, rather than 

only columns and beams. This ability to generate floor 

structures with funicular forms can foster the development 

of architectural spaces with more diverse design elements. 

We further apply machine learning techniques (ANNs) to 

evaluate and optimize the funicular structure’s structural 

performance and constructability, thus finding the optimal 

solutions within the almost infinite solution space. To that 

end, a machine learning model is trained and used as a 

fast evaluator to help the evolutionary algorithm find the 

optimal designs. This interdisciplinary method bridges 

computer science and structural design, providing flexible 

design choices for generating floor structures.

METHODOLOGY

The Topology and the Subdivision

To re-design a space with the Maison Domino system into 

funicular forms, the topology should be defined, including 

the graph relationship (connectivity) between each column. 

For any floor plans with columns in any position, straight 

lines can be drawn between pairs of columns, representing 

the main structural members. Once there is at least one 

line connecting to each column and no lines are overlap-

ping, the topology is legal, and the complete graph shows 

the initial structural members.

Figure 3 and Figure 4 explain the logic for constructing 

forces that could generate a more efficient and ecological 

funicular solution from a regular Domino module as force 

and form dual diagrams. Shown in Figure 4, in the funicular 

alternative, the connection between two columns is re-es-

tablished with a funicular arch by designing an aggregable 

3D force diagram. Aggregating the forces would cause the 

connections in the form to further expand to boundaries or 

other supports, which ultimately become the main struc-

tural network among the columns. The total applied load, on 

the other hand, is represented by a horizontal polygon face 

at the top of the force diagram. Subdividing the total applied 

load and converging the subdivided faces to different points 

in the force diagram allows additional load paths to be 

generated in the form, and through them the applied loads 

are transferred to the main structures.

Additionally, Figure 5 and Figure 6 show the steps for 

generating funicular-arch floor structures from 2D layouts. 

The first step is to identify connections between vertical 

structural elements and establish the connectivity map. 

From the connectivity map, one can determine the force 

boundary that demonstrates how the applied load is distrib-

uted to each structural member. The 3D force diagram is 

then created for each force boundary. The force diagrams 

can be aggregated to generate the resulting form. Further, 

as shown in the different topologies for layouts with 

columns and walls, the geometries of the constraints can 

also affect the connectivity map and the force distribution.

Regarding the graph as an initial form diagram, the force 

diagram can be generated using the graphic statics method 

as a dual geometry (Akbarzadeh, Van Mele et al. 2015). 

Figure 3. Funicular solution for 2D domino structure. a) flat structure. b) arch structure and its force diagram. c)  extendable arch structure and its force diagram.

Figure 4. Funicular solution for 3D domino structure. a) flat structure. b) arch structure and its force diagram. c)  extendable arch structure and its force diagram.
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Figure 5. Derive funicular solution from simple layout (with 4 columns).

Figure 6. Derive funicular solution from simple layout (with 2 columns and 2 walls).

Figure 7. Subdivision exploration.
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The force diagram represents the internal and external 

force distribution. Subdividing the force diagram divides 

the internal forces into several sub-forces, thus resulting 

in internal structural members. With the final subdivided 

force diagram, the graphic statics method is used again to 

generate the form diagram as a dual diagram under the 

boundary constraints of the initial site. Therefore, a funic-

ular arch structure can be designed through this method. 

With different subdivision strategies, the method can 

provide designers with highly complex and diverse design 

options (Figure 7).

Machine Learning Form Finding

There is an almost infinite number of structural forms with 

different topology and subdivision rules. Optimization is 

achieved by evaluating each form in terms of its structural 

performance and material usage. However, traditional opti-

mization methods—for example, enumeration and genetic 

algorithms (GAs)—usually cause an unacceptable time 

cost during the process. Therefore, we propose a feed-for-

ward neural network that learns the mapping between 

the topology using the subdivision rules and the evalua-

tion criteria (Figure 8). By training with a small amount of 

pre-generated data, the trained neural network gains the 

ability to predict the structural performance and the mate-

rial use with high accuracy within milliseconds. Using this 

neural network model, the form finding process requires 

less time, finding the best solutions (Zheng, Moosavi et al. 

2020).

In detail, the sample subdivision patterns are generated 

as the training set, in which the parameters to control 

the subdivision become the input neurons of the neural 

network. The subdivided form diagrams can be generated 

according to the subdivided force diagrams and then be 

evaluated based on their structural properties, which 

become the output neurons of the neural network. With 

the sigmoid as the activation function and the mean square 

error as the loss function, an ANN can be constructed and 

trained, containing several hidden layers according to the 

training accuracy.

After training, the neural network becomes an agent with 

the knowledge to quickly evaluate structural properties. 

With the trained neural network model, all possible combi-

nations of the subdivision parameters can be inputted for 

evaluation, and, according to the outputted values, the 

solutions with the best performance can be filtered, thus 

finding the best forms.

RESULTS

The Re-design of Space with Random Columns

To test the feasibility of this method, we randomly generate 

a space with a rectangular floor plan and 11 columns. 

We choose this example as the case study of using the 

funicular structure to re-design the architectural space 

(Figure 9.1). The center points of those 11 columns can 

be regarded as the connecting points for the topology. 

Figure 8.  Workflow of machine learning assisted form finding.
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Figure 9. Workflow of generating and optimizing a funicular arch floor structure.

The topology of those connecting points contains 10 fixed 

lines to the boundary and 30 optional internal lines, which 

further results in 88 different types of topology. The subdi-

vided force diagrams can be generated by subdividing 

the 88 force diagrams derived from the topology with a 

controlling parameter from 0 to 1; the funicular forms can 

then be created.

Machine Learning Models

In the process of generating the funicular forms, there are 

88 types of topology and one parameter with continuous 

values, which control the generation. Therefore, each form 

can be represented by a 89-dimension input vector (88 

values for the one-hot encoding and 1 value for the subdi-

vision parameter), and the evaluation is a two-dimension 

output vector showing the values of the two criteria. After 

the experiment, we found an optimal setting for the hidden 

layers and the activation and loss functions that results 

in a high level of accuracy in predicting the structural 

performance and material use from the topology and the 

subdivision rules.

In detail, Figure 9 shows the workflow of the machine 

learning process. After receiving the input settings of the 

columns and walls from the users, different topological 

graphs can be generated as sets of parameters repre-

senting the initial boundary of each force cell (Figure 9.2). 

By training a neural network (Figure 9.3) with the method 

described above, one can find the best topological graph 

with the smallest average edge length, indicating the most 

equal distribution of the main forces (Figure 9.4).

With the selected topological graph as the initial bound-

aries (Figure 9.5), different subdivision rules are applied, 

resulting in multiple force diagrams (Figure 9.6) and the 

corresponding form diagrams. Another neural network 

(Figure 9.7) can be trained and used to find the best force 

and form diagrams, with the input as the subdivision 

parameters and the output as the structural properties.

For the output evaluative value, we choose to use the mate-

rial usage as the criterion. In Figures 10 and 11, we apply 

some of our most successful subdivision strategies to the 

simplest layouts and compare the volume of the generated 

arch floor structure with the regular slab. As shown in 

the statistics, our generated results save from 30% to 50% 

materials compared to those obtained through the regular 

method, but the best material-saving solution is found by 

the neural network.

Finally, the trained neural network finds the optimal results 

as the subdivision parameters (Figure 9.8). By transforming 

the subdivision parameters into the 3D force diagram 

(Figure 9.9) and its corresponding form solution, the 

network can generate the best form with the largest mate-

rial savings (Figure 9.10).

Form Finding Results

After training with the generated samples, the neural 

network has the ability to act as an evaluation agent to give 

real-time feedback on the two criteria values. Under the 

guidance of the neural network model, forms with better 

structural performance and lower material use are found 

(Figure 12).

CONCLUSION AND DISCUSSION

Architectural space structured with the Maison Domino 

system can be re-designed using a funicular structure 

generated by the graphic statics method. The topology 

and subdivision rules control the generation of the 

force diagrams; therefore, the funicular forms are also 
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Figure 10. Material saving comparison I.

Figure 11. Material saving comparison II.

generated as a dual geometry.

A trained neural network model can find the forms with 

the user-defined evaluative metrics. The machine learning 

model is trained and used as a fast evaluator to help the 

evolutionary algorithm to find the optimal designs. This 

method spans the interdisciplinary border of computer 

science and structural design, providing flexible design 

choices for generating floor structures.

The future research of this project includes improving the 

topology and subdivision rules, as well as increasing the 

accuracy and processing speed of the machine learning 

model.
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