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ABSTRACT
Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with 

anticlastic curvature, designed in the context of graphic statics. They are considered as 

efficient structures applicable to many functions on different scales. Due to their complex 

geometry, design and fabrication of SFSs are quite challenging, limiting their application in 

large scales. Furthermore, designing these structures for a predefined boundary condi-

tion, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating 

these geometries is mostly possible using additive manufacturing techniques, requiring a 

lot of supports in the printing process. 

Cellular funicular structures (CFSs) as strut-based spatial structures can be easily 

designed and manipulated in the context of graphic statics. This paper introduces a 

computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular 

Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the 

structure out of a flat sheet of material using the origami/ kirigami technique as an ideal 

choice because of its accessibility, processibility, low cost, and applicability to large scales. 

The paper concludes by displaying a structure that is designed and fabricated using this 

technique. 
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1 Shellular structures in nature, architecture and engineering; (a) cross-section through a sea urchin skeletal plate (Lai et al 2007), (b) Frei otto’s physical form-finding using 
soap film (Otto 1970); (c) The bridge over the Basento by Sergio Musmeci (Canestrini, 1975); (d) Shellular structure’s application in an aerospace turbine engine (Vlahinos 
and O’Hara 2020).  

INTRODUCTION
Shellular structures

Shellular (shell cellular) structures are a category of 

cellular structures in nature, composed of single, contin-

uous, smooth-curved shells (Figure 1). Their geometry 

includes surfaces filling the space with the least amount 

of material, called minimal surfaces (Meeks and Perez 

2011; Han et al. 2015). Minimal surfaces in nature (e.g., 

soap film) have inspired many architects and engineers 

to design lightweight structures on large scales for many 

years (Otto 1970).  Considering k1 and k2 as the prin-

cipal curvatures of a minimal surface in each point, these 

surfaces have zero mean curvature (H = (k1 + k2) / 2 = 0) 

and negative Gaussian curvature (G = k1 × k2 < 0) (Hilbert 

and Cohn-Vossen 1990). Recent studies show that due to 

their specific morphology and high surface-to-volume ratio, 

these structures have better mechanical performance 

compared to the other cellular structures (e.g., strut-based 

cellular structures) (Han et al. 2015; Han et al. 2017).

Graphic statics

Graphic statics as an intuitive method of structural design 

has been used to design and analyze structures for many 

years (Maxwell 1864, Rankine 1864; Culmann 1866; 

Cremona 1890; Beghini et al. 2013). This method allows 

the designer to design a structure by exploring its form 

and force simultaneously. Using reciprocal diagrams, one 

is able to control the internal flow of force and external 

loading scenario while designing the structure. Three-

dimensional graphic statics (3DGS), as an extension of 2D 

graphic statics, enables the designer to design three-di-

mensional and axially loaded structures in equilibrium 

in which no bending occurs (Akbarzadeh 2016; McRobie 

2016; Konstantatou et al. 2017; D’acunto et al. 2017; 

Akbarzadeh et al. 2021). In this method, there is a clear 

relation between the form and force diagrams as a pair 

of reciprocal diagrams linked through simple geometric 

constraints. In 3DGS, a closed polyhedron can represent 

the equilibrium of a three-dimensional node (Figure 2a). 

Each edge ei or force fi in the form diagram is perpendic-

ular to the corresponding face fi 
† in the force diagram. The 

form diagram represents the geometry of the structure 

combined with the reaction forces and applied Figure 

loads (Figure 2, bottom), while the force diagram 

represents the equilibrium of internal and external forces 

(Figure 2, top).In this paper, the form is denoted by Γ and 

the force diagram by Γ †. Furthermore, all the topological 

elements related to the force diagram are denoted by † 

superscript. 

Topologically speaking, these diagrams consist of vertices 

vi, edges ei, faces fi, and cells ci. Each vertex, edge, face, and 

cell (vi
†, ei

†, fi
†, ci

†) in the force diagram corresponds to a 

cell, face, edge, and vertex (vi, ei, fi, ci) in the form diagram 

(Figure 2) (Akbarzadeh, 2016). Since these diagrams are 

reciprocal and the faces of the force diagram (corre-

sponding to the form diagram’s edges) are planar, the form 

diagram’s faces (corresponding to the force diagram’s 

edges) are planar as well (Akbarzadeh, 2016).

A closed and convex force diagram signifies a compres-

sion/tension-only structure in equilibrium. Furthermore, 

the magnitude of the force fi in each strut member in the 

form diagram is proportional to the area of the corre-

sponding face A(fi ) in the force diagram (Figure 2a) 

(Akbarzadeh, 2016). This theory can be simply proved 

based on the divergence theorem (Strokes, 1901). Based 

on this theory, the sum of all area-weighted normals of a 

polyhedron is zero. As a form-finding technique, subdi-

viding the internal space of the force diagram results in a 

variety of topologically different structures, designed for a 

defined boundary condition and loading scenario (Figure 2) 

(Akbarzadeh 2016; Akbari et al. 2019). Adding thickness to 

each edge of these form diagrams proportional to the area 

of its corresponding face in the force diagram results in a 

strut-based cellular funicular structure (CFC) (Figure 2). 

Increasing the number of subdivisions in the force diagram 

results in a form diagram with smaller edges and distrib-

uted forces in the members (Figure 2a-d and e-f). This 

increase can finally result in the edges with near zero-

length, approximating a surface as a form diagram. Specific 

subdivision techniques in 3DGS can approximate surfaces 

with synclastic or anticlastic curvatures as form diagrams 

(Akbari et al. 2019).  
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3a Figure 3a displays a tetrahedron as a force diagram 

corresponding to a node in equilibrium with two forces 

upward and two downwards as a form diagram (a node 

with an anticlastic curvature). This tetrahedron is gener-

ated by connecting the end points of the two skew lines l†
i 

and l' †
i . Dividing l†

i  and l' †
i into equal segments and estab-

lishing a tetrahedron between each two skew segments 

from each line subdivides the force diagram into multiple 

tetrahedrons, resulting in a discrete anticlastic surface 

as a form diagram (Figure 3a-d) (Akbari et al. 2019). Two 

lines l †
i and l' †

i play the role of subdivision axis in the force 

and the curvature axis in the form diagram (Figure 3d). 

These lines are parts of two connectivity graphs, named 

labyrinths, connecting two segregated regions, divided 

by the anticlastic surface (Fischer and Koch 1989). Using 

the anticlastic subdivision technique, one can design an 

anticlastic polyhedral surface, named a Shellular Funicular 

Structure (SFS). The labyrinths as the subdivision axes in 

the form and the control handles in the force, facilitate the 

design process and manipulation of the SFS form-finding 

technique (Akbari et al. 2020).

Origamizing polyhedral surfaces using tuck-folding

Origami, as an art of folding a flat sheet of material to the 

desired shape without cutting or stretching, has been 

investigated for many years. On the other hand, Kirigami 

is the combination of cuts and folds on a flat sheet of 

material in order to result in the desired geometry (Castle 

et al. 2014). Tuck-folding as an origami method can design 

any freeform surface from flat sheet material by tucking 

and hiding the unwanted areas of the paper (Tachi 2009). 

In this process, the Origamizer software can be used to 

generate the folding/cutting pattern (Demaine and Tachi 

2017). The input is a polyhedral mesh and the output is 

the folding pattern with edge tucking molecules (ETM) and 

vertex tucking molecules (VTM) added (Figure 4). Each 

ETM is a quadrilateral with a crease pattern, inserted 

between a pair of edges in the pattern, corresponding 

to an edge on the reference mesh (Figure 4). Each VTM 

is an N-gon surrounded by N edge-tucking molecules 

(ETM) corresponding to a vertex on the reference mesh. 

Despite the use of more materials, tuck-folding has many 

advantages over regular folds. It is easier to fold for 

complex geometries (especially with anticlastic curvatures) 

as the fold angle is embedded in the cutting patterns. 

Furthermore, the ETMs provide extra stiffness and stability 

to the folds compared to regular folds. This technique 

includes three steps, cutting to a disk, mapping surface 

polygons, and generating the crease/cut pattern (Tachi 

2009).

• Cutting to a disk : To map the surface’s polygons to a 

2D plane, one needs to construct a polygonal schema, 

a polyhedral surface homeomorphic to a flat disk that 

covers the original surface (Figure 4). 

• Mapping the surface’s polygons : Next, the polyhe-

dral mesh is decomposed into individual polygons 

and isometrically mapped to a 2D plane. In Isometric 

From design to the fabrication of shellular funicular structures Akbari, Lu, Akbarzadeh

2 Different types of force diagram’s 
subdivisions in 3DGS result in new 
form diagrams; (a), (e) a closed cube 
as a force diagram represents a 
node in equilibrium; (a-d) internal 
subdivision of a force diagram 
without subdividing the global 
faces; (e-h) subdivision of a force 
diagram while subdividing the 
external faces and extruding inside.

3 Different types of force diagram’s 
Iterative subdivision of a 
tetrahedron as a force diagram 
approximates a discrete surface 
with anticlastic curvature (a-d) as 
the form diagram. Using this subdi-
vision between specific labyrinth 
graphs, one can design a shellular 
funicular structure (e) and use the 
labyrinths as control handles to 
manipulate the structure (f). 

4 Origamizing a polyhedral surface 
using tuck-folding technique.

2
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mapping, the edge lengths and the polygon’s angles will 

be preserved (Figure 4). 

• Designing the folding/ cutting pattern : Surface flat-

tening is the problem of generating a 2D pattern from 

a given 3D shape using an isometric mapping. After 

adding ETMs and VTMs between the mapped polygons, 

using specific equality and inequality conditions (Tachi 

2009), the method ensures that each ETM is an isos-

celes trapezoid and eachVTM is a closed convex polygon. 

By folding a valley crease defined in the middle of each 

ETM, the ETMs convert to an edge with a hidden tuck in 

the folding state. Considering the thickness and stiffness 

of the material, VTMs are cut out as holes, combining 

the kirigami and origami techniques to facilitate the 

folding process (Liu et al. 2019). In the goal mesh, the 

angle between the vertex axis and the edge (i.e., ß) is 

equal to the angle between the VTM’s and the ETM’s 

edge (Figure 4). This angle is defined as the tuck angle 

which assures us that the curvature of the goal mesh in 

each vertex is equal to the one in the reference mesh. 

Problem statement

Although SFSs are considered as efficient structures 

applicable to different functions in many scales, due to their 

complex geometry, their process of computational modeling 

and fabrication are quite challenging, limiting their appli-

cation in large scales. Furthermore, designing these 

structures for a predefined boundary condition, control 

and manipulation of their geometry are not easy tasks. 

Moreover, fabricating these geometries is mostly possible 

using additive manufacturing techniques, requiring many 

supports in the printing process. Recently, Akbari et al. 

(Akbari et al. 2019, Akbari et al. 2020) proposed different 

form-finding techniques to design Shellular Funicular 

Structures in the context of graphic statics based on 

designing the labyrinths’ graphs and applying anticlastic 

subdivisions in between. But these techniques lack a robust 

computational algorithm to translate a Cellular (CFS) to a 

Shellular Funicular Structure (SFS). Furthermore, due to 

the specific criteria that need to be satisfied in each step, 

designing the labyrinths’ graphs as an intuitive process is 

not an easy task (Akbari et al. 2020). Moreover, due to their 
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5 The form-finding flowchart (left) and the workflow (right), representing the algorithm for translating a CFS to SFS in the context of graphic statics.

complex interwoven geometry, their fabrication process 

using digital manufacturing techniques on large scales 

is challenging. This paper seeks a robust computational 

method for the design and fabrication of these structures 

to facilitate their application in macro scales. 

Objecives                                                                                          

The main objectives of this paper are to explain a compu-

tational algorithm for translating a Cellular Funicular 

Structure (CFS) to a Shellular Funicular Structure (SFS), 

and describing a fabrication method to build SFSs out of flat 

sheets of material using the origami/kirigami technique. As 

a proof of concept, a structure’s geometry with its folding/

cutting pattern is designed and fabricated using the SFS 

and tuck-folding techniques.     

METHDOS
The methodology for designing and fabricating SFSs is 

two-fold. The first section explains the computational algo-

rithm behind the process of translating a CFS to an SFS and 

the second one describes the fabrication process, inspired 

by the tuck-folding technique.

Computational design process

To translate the geometry of a Cellular Funicular Structure 

(CFS) to a Shellular Funicular Structure (SFS), one needs 

to subdivide the corresponding force diagram, such that 

each vertex vi , connected to the group of edges ei  converts 

to an anticlastic patch, consisting of a group of vertices vi 

, faces fi and edges ei  with smaller lengths, approximating 

a discrete surface (Figure 3). Materializing the new form 

diagram by adding faces between the edges (instead 

of adding thickness to the edges) results in a Shellular 

Funicular Structure. It is important to notice that the 

labyrinths li and li ' in the force diagram, overlay on the 

edges ei  and ei ', corresponding to the faces fi  and fi ' in the 

form diagram (Figure 3a, b). While materializing the form 

diagram in the SFS form-finding process, the faces in the 

form corresponding to the labyrinth edges in the force 

should not be materialized. Removing these faces results in 

a 2-manifold geometry (Figure 3).

Although one can use this technique to design an SFS, 

designing the labyrinths’ graphs intuitively is not an easy 

task. This section describes a computational algorithm for 

translating a CFS to SFS. The main objective of this algo-

rithm is to find proper three-dimensional labyrinths’ graphs 

From design to the fabrication of shellular funicular structures Akbari, Lu, Akbarzadeh
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in the form and the force diagrams (inputs) and using them 

to design the shellular structure (Figure 5). This algorithm 

receives a form and the force diagram (Figure 5a) that are 

designed using Polyframe (Nejur and Akbarzadeh 2021). 

After converting the force diagram to a group of tetrahe-

drons (tetrahedralization, Figure 5b), the algorithm finds the 

possible labyrinths’ graphs in the force diagram (Figure 5c), 

and remove the corresponding faces to these labyrinths in 

the form diagram to result in a 2-manifold geometry (Figure 

5d). Finally, the smooth version of the form diagram will 

be visualized using the Catmul-Clark subdivision (Catmul 

and Clark 1978), and the main shellular load-path will 

be constructed using the anticlastic subdivision in 3DGS 

(Figure 5e) (Akbari et al., 2019). In the SFS design process, 

there are three main principles that need to be considered;

• each pair of labyrinths in the form diagram (e.g., lj,1 and 

l'j,1) should form a tetrahedron in between (e.g., cj,1), 

corresponding to an anticlastic node (e.g., vj,1) in the 

form diagram (Figure 5c),  

• the force diagram includes two sets of labyrinths (l †
j,1 

and l' †
j,1) and each tetrahedron in the force diagram (e.g., 

c †
j,1 ), should only include one labyrinth edge from each 

set which is in a skew position to the other(Figure 5c),

• each labyrinth’s edge in the force diagram can be 

connected to the labyrinth edges from the same set, 

assuring that the resulting surface (form diagram) will  

7

REALIGNMENTS

6  Different tetrahedralization of a 
cube as a force diagram, e.g., into 
six (a, b) and five (c, d) tetrahedrons, 
results in different types of the 
labyrinths' graphs. 

7  The process of finding a labyrinths’ 
graph in a tetrahedralized force 
diagram (a-f) and 3 different types 
of graphs resulting from this algo-
rithm (g, h, i). 
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      divide the space into two subspaces (Figure 5d, e).

Tetrahedralization                                                              

According to the first principle mentioned above, each 

force diagram should only include tetrahedrons, resulting 

in 4-valency nodes (nodes that are connected to 4 edges) 

in the form diagram, representing an anticlastic curvature. 

The polyhedron tetrahedralization function decomposes 

a 3D polyhedron into a set of non-overlapping tetrahedra 

whose vertices are chosen from the vertices of the poly-

hedron (Toussaint et al. 1993). A convex polyhedron in 3D 

can always be tetrahedralized without adding new vertices 

(Steiner points) by connecting any vertex of the polyhedron 

to all the other vertices (Lennes 1911). Therefore, there 

might be multiple solutions for tetrahedralizing an input 

force diagram (Figure 6). 

Unfortunately, the minimum-complexity triangulation 

problem is NP-complete (Below et al. 2000). Hence, in this 

algorithm, the authors provide part of the possible solu-

tions, using the user’s preference (Figure 6). In this process, 

each input vertex (e.g., v †
i,1 , v †

i,2) will be connected to all 

the other vertices in the polyhedron, resulting in a group of 

tetrahedrons (Figure 6a, b). In some examples like a cube, 

there might be different techniques resulting in fewer tetra-

hedrons and new labyrinths’ graphs (Figure 6c, d). Since 

this subject is beyond the scope of this paper, it is going to 

be studied further in future researches.   
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Finding the labyrinths’ graph.                                                  

After tetrahedralizing the force diagram, two edges from 

each tetrahedron, as the labyrinths’ graphs’ edges, are 

needed to be selected. Figure 7a-f displays the process for 

finding the labyrinths’ graphs in a cube partitioned into six 

tetrahedrons, as the force diagram. 

This process starts with selecting a random cell c †
i,1 (Figure 

7b). Selecting one of the edges l †
i,1 of this tetrahedron as a 

labyrinth’s edge (Figure 7c) determines the skew edge l' †
i,1  

as the other labyrinth’s edge (Figure 7d). The edges l' †
i,1 and 

l †
i,1  have specific topological relations to each other and 

are called the dual of each other. The algorithm proceeds 

through the four neighbors of the tetrahedron cell c †
i,1. 

Each neighbor (e.g., c †
i,2 ) has a face with three edges and 

three vertices in common with the previous cell c †
i,1  (Figure 

7e). Among these edges, only one edge is already recog-

nized as a labyrinth edge (i.e., l †
i,1 ). If l' †

i,1 is the dual of l †
i,1 

in cell c †
i,1 , it is the dual of l †

i,2 in the cell c †
i,2 as well (Figure 

7e). Similarly, the algorithm marches through all the cells 

in the force diagram and finds the dual labyrinth edges of 

the previous cell (Figure 7f), until all the cells are passed. In 

this process, each cell has a pair of labyrinth edges, and the 

force diagram has two labyrinth graphs l †
i and l' †

i (Figure 

7g). 

The resulted labyrinths’ graphs are the first type of possible 

graphs for a force diagram. Since there is a possibility of 

choosing 3 different pairs of labyrinth edges in a tetrahe-

dron out of 6 edges, choosing different pairs in the first cell 

c †
i,1 (Figure 7d) as the labyrinth edges will result in different 

labyrinths’ graphs for the force diagram (Figure 7g, h, i). 

Hence, according to this algorithm, there are 3 geometri-

cally different labyrinths’ graphs for a force diagram. 

Singularity                                                                                           

In some situations, due to the specific edge-cell connectivity 

(when a labyrinth edge is connected to the odd number 

of cells, e.g., Figure 8a), the algorithm explained above 

has only one solution (instead of 3). Figure 8a displays a 

tetrahedralized force diagram with 5 cells and possible 

labyrinths’ graphs l †
i and l' †

i . Figure 8b shows an attempt 

to find the second pair of the possible graphs. In cell 

c†
i,1, two labyrinth edges l †

i,1 and l' †
i,1  are selected. After 

selecting the labyrinths’ edges of to the next cells respec-

tively (c†
i,2 , c†

i,3 , c†
i,4, c†

i,5), the algorithm faces the cell c†
i,5 

with two edges l†
i,1 and l†

i,3 from the same set of labyrinth’s 

graph which is against the main principles of the SFS’s 

technique (Figure 8c). Having two labyrinths in the cell 

c†
i,5 will eliminate two neighbor faces of the edge ei,1 in the 

form diagram (faces are marked with blue), resulting in the 

edge ei,1 connected to one face (Figure 8c). In this situation 

the cell c†
i,5 is called a singular cell. This issue happens 

when an edge in the force diagram is connected to an odd 

number of cells. To solve this issue, one may subdivide the 

singular cell into two cells and add the new edge as one of 

the labyrinths’ edges (e.g., l†
i,3) (Figure 8d). 

Eliminating the extra faces                                                       

Each of the labyrinths’ graphs corresponds to a group 

of faces in the form diagram (Figure 9b, g, l). Eliminating 

these faces from the form diagram results in a 2-manifold 

discrete surface (Figure 9c, h, m). 

Visualization and subdivision                                                 

There are two ways to generate a smooth curved surface 

from the discrete surface resulted in the previous section. 

The first solution is to apply a Catmull-Clark subdivision, 

generating a bi-cubic uniform B-spline surface to visu-

alize the smooth anticlastic surface and to compare the 

geometry of different structures.  (Figure 9 d, I, n) (Catmull 

and Clark 1978). To result in a smooth form diagram in the 

context of graphic statics, and finding the corresponding 

load path, one needs to apply the anticlastic subdivision 

technique (explained in the Introduction) to each tetra-

hedron cell between each pair of labyrinths (Figure 9 

e, j, o). Using this technique, one can intuitively design a 

Cellular Funicular Structure (CFS) for a specified boundary 

condition and loading scenario (e.g., a connection, a 

column, or a bridge) and translate it to its counterpart, a 

Shellular Funicular Structure (SFS) (Figure 10). It is worth 

mentioning that in graphical form finding methods, the self-

weight of the structure is not considered. To consider the 

self-weight, one needs to assign mass to each to each node 

in the system and apply numerical form finding methods 

(e.g., mass spring or force density) to find the new form in 

8 A force diagram comprising 5 tetrahedrons (a), an attempt to find the new labyrinths’ graphs (b), finding the singular cell (c), and resolving the singularity by subdividing the 
cell (d).

From design to the fabrication of shellular funicular structures Akbari, Lu, Akbarzadeh
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equilibrium (Adriaenssens et al. 2014). 

Fabrication process                                                             

Shellular Funicular Structures (SFSs) comprise planar 

faces resembling a polyhedral surface (Introduction). 

Therefore, they are a genuine candidate to be fabricated 

based on Origami/kirigami techniques using flat sheet 

material. Tuck-folding can be used as a fabrication method 

to design the folding pattern of these structures. Using this 

technique, one can either fabricate a shellular system as 

a discrete single-layer structure, or a double layer form-

work for pouring a structural material like concrete (Figure 

11a,b). This method finds the folding pattern of a polyhe-

dral surface out of a flat sheet of material, with hidden 

tucks instead of constructing the exact faces (Figure 11). 

Furthermore, the edge tucking molecules (ETMs) provide 

extra stiffness and stability to the folds compared to 

regular folds. This section explains the process of fabri-

cating a shellular geometry with the tuck-folding method 

introduced in the introduction (Tachi 2009, Liu et al. 2019).

Fabricating a shellular funic-

ular strture the tuck-folding technique                                                                                               

A shellular geometry with a bounding box dimension of 

620mm by 620mm by 310mm as a part of the shellular 

funicular bridge displayed in Figure 9 is generated using 

the proposed algorithm for a trial fabrication (Figure 12). 

This geometry is cut and flattened into 4 cutting patterns, 

and each pattern has a bounding rectangle dimension 

of 760mm by 700mm. For the purpose of reducing the 

shipping cost and the level of folding difficulty, each cutting 

pattern is further split into 7 smaller parts (Figure 12).

9 Three types of possible labyrinths' graphs for a force diagram (a, f, k) and their reciprocal form diagram with faces correspond to the labyrinths’ edges (b, g, l). Removing 
these faces results in a 2-manifold geometry (c, h, m) which can be converted to a smooth surface by either Catmull-Clark (d, I, n) or anticlastic subdivision in 3DGS (e, j, o).

After examining the durability, mechanical properties, and 

foldability of different materials, 0.5mm stainless steel 

sheet is selected as the material for fabrication, and an 

industrial laser cutter is used to cut steel sheets to the 

target patterns. To mark the fold lines and increase the 

ease of manual folding, dash line cuts are added to the 

cutting patterns. The design parameters of the dash line 

cuts include material density, cutting interval, and dash 

line width (Figure 13). Material density is defined by the 

percentage of material left on a folding hinge after dash line 

cutting; cutting interval means the distance between two 

neighboring dash line cuts; dash line width indicates the 

width of the dash line cuts, which confines the bending area 

along the fold lines. Lower material density, smaller cutting 

interval, and larger dash line width lead to easier folding, 

however, small cutting interval also impairs the material 

strength along the hinges. Based on a series of physical 

experiments (Figure 15), the cutting interval is determined 

at 1.5mm. The dash line width has more complex impacts on 

the folding behavior as too small a width may incur a larger 

size in the folded geometry, while excessive width increases 

the folding error. Those parameters are designed in such 

a way that all folds can be easily achieved by hand, and the 

dimensions of the folded geometry are as close as possible 

to the original (Figure 15). To secure the tuck-folding, a 

pair of circular cuts are also added to each edge tucking 

molecule which are later aligned and fastened using M3 

screws and nuts after folding (Figure 14). When considered 

as a frictionless hinge and rigid face system, each folding 

pattern has only one degree of kinematical indeterminacy, 

meaning that all the folding lines need to be folded at the 

same time (Figure 16). After folding each part, the shellular 
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10 The examples of the translation of force and form diagrams of CFSs (a, c, e) to SFSs using the SFS’s computational algorithm (b, d, f).

structure is assembled and secured using screws and nuts 

(Figure 17, 18). 

Results and discussion                                                                    

In this research, the authors proposed a robust compu-

tational algorithm to translate a CFS to a SFS. Using this 

algorithm, one can design any compression/tension-only 

shellular structure for a defined boundary condition, from 

meso-scale (e.g., columns and beams) to macro-scale (e.g., 

a building or a bridge). From the fabrication point of view, 

due to the interwoven geometry of SFSs which neces-

sitates lots of supports in the printing process, additive 

manufacturing techniques may not be considered as an 

efficient process on a large scale. In the meantime, flat 

sheet materials are an ideal choice because of their acces-

sibility, processibility, low cost, and applicability to large 

scales. Hence, the second part of the research focused 

on the fabrication process of SFSs out of flat metal sheets. 

This method facilitates the use of these structures on the 

large scale, as a single-layer structure or a double-layer 

formwork for pouring concrete. (Figure 17, 18). Thanks 

to the proposed design methodology, the strctures that 

are designed using this technique can be considered as 

self-supporting structures, designed for specific loading 

scenarios. Moreover, adding thickness to the edges of the 

strucures in the fabrication process results in a stiffer 

system, increasing the structural capacity of the formwork. 

CONCLUSION                                                                                    

Using the proposed technique, shellular funicular struc-

tures can be designed and fabricated for macro-scale 

applications. Future researches include implementing 

interactive software for the design and manipulation of 

SFSs and investigating the effect of different tetrahedral-

ization on the results. In the fabrication process, there is 

a need for improving the process of designing the folding 

pattern. Controlling the ETMs’ widths using the Origamizer 

software is not an easy task, resulting in a large waste of 

material. Adding ETMs with different widths to the struc-

ture (proportional to the force distribution in the system) 

results in an efficient system in terms of the material usage 

with constant stress distribution. It is important to notice 
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11 Fabricating an SFS using the tuck-folding technique as a discrete single-layer structure (a), or double-layer form-work for 
pouring concrete (b).

12 The shellular geometry for trial fabrication and the fold pattern developed using the Origamizer software (Demaine and Tachi 

13   The design parameters of dash line cuts.

14   Securing the tuck-folding using scews and nuts. 

11 12

that the structures that are designed using this tech-

nique are already in equilibrium for the defined boundary 

condition and adding non-uniform thickness in the materi-

alization process only yields constant stresses in them.
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