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Figure 1: Graphical abstract; the process of designing the geometry of shellular funicular structures and
approximating it using catmull-clark algorithm.

Abstract:
This paper introduces an interactive form finding technique to design and explore continuous Shellular
Funicular Structures in the context of Polyhedral Graphic Statics (PGS). Shellular funicular forms are
two-manifold shell-based geometries dividing the space into two interwoven sub-spaces, each of which
can be represented by a 3D graph named labyrinth [1]. Both form and force diagrams include labyrinths

Copyright © 2022 by Mostafa Akbari and Masoud Akbarzadeh.
Published by the International Association for Shell and Spatial Structures (IASS) and Asian-Pacific Conference
on Shell and Spatial Structures (APCS) with permission.



Proceedings of the IASS 2022 Symposium affiliated with APCS 2022 conference
Innovation·Sustainability·Legacy

Figure 2: Different types of force diagram’s subdivisions in 3DGS result in new form diagrams; (a), (e)
a closed cube as a force diagram represents a node in equilibrium; (a-d) internal subdivision of a force
diagram without subdividing the global faces; (e-h) subdivision of a force diagram while subdividing the
external faces and extruding inside.

and the form finding is achieved by an iterative subdivision of the force diagram across its labyrinths [2].
But this iterative process is computationally very expensive, preventing interactive exploration of various
forms for an initial force diagram. The methodology starts with identifying three sets of labyrinth graphs
for the initial force diagram and immediately visualizing their form diagrams as smooth and continuous
surfaces. Followed by exploring and finalizing the desired form, the force diagram will be subdivided
across the desired labyrinth graph to result in a shellular funicular form diagram (Figure 1). The paper
concludes by evaluating the mechanical performance of continuous shellular structures in comparison
with their discrete counterparts.
Keywords: 3D graphic statics, shellular, structure, form finding, Catmull-Clark algorithm.

1. Introduction
This section is divided to three main parts; first the authors explain the geometry of shell cellular (shel-
lular) structures, then an introduction to the graphic statics as a geometric form finding technique will be
given, and finally the shellular structures in the context of graphic statics will be introduced.
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Figure 3: Iterative subdivision of a tetrahedron as a force diagram approximates a discrete surface with
anticlastic curvature (a-d) as the form diagram. Using this subdivision between specific labyrinth graphs,
one can design a shellular funicular structure (e) and use the labyrinths as control handles to manipulate
the structure (f).

1.1. Shellular structures
Shell structures as thin, curved plate structures are shaped to transfer forces via compression, tension and
shear stresses that act in the plane of the surface. These structures have a lot of applications in design,
construction, and science [3–5]. Shell cellular (shellular) structures as a category of cellular structures are
composed of continuous smooth-curved shells. The geometry of these structures includes a surface with
the least amount of material filling the space, called minimal surface [6]. The geometry of these surfaces
in nature (e.g., soap film) have inspired many architects and engineers to design lightweight structures[7].
In each point of the geometry of minimal surfaces, they have zero mean curvature (H = k1 × k2) and
negative Gaussian curvature (G = k1 × k2 < 0, considering k1 and k2 as the principal curvatures of the
surface) [8]. Due to the high surface-to-volume ratio and specific morphology, shells with the geometry
of these surfaces have shown better mechanical performance, compared to the other cellular structures
(e.g., strut-based cellular structures) [2, 9, 10].

1.2. Graphic statics
Utilizing graphic statics, as an intuitive structural design method, one can design a structure using recipro-
cal diagrams, while controlling the internal flow of force and the external loading scenario [11–15].Three
dimensional graphic statics (3DGS) or polyhedral graphic statics (PGS), as an extension of two dimen-
sional graphic statics (2DGS), enables the user to design axially-loaded structures in 3D in which no
bending occurs [16–19]. A clear relation between the form and force diagrams enables the designer to
represent the equilibrium of a 3 dimensional node (form diagram) using a closed polyhedron (force di-
agram) (Figure 2a). Each edge ei or force fi in the form diagram is perpendicular to the corresponding
face fi

† in the force diagram. The form diagram represents the geometry of the structure combined with
the reaction forces and applied loads, while the force diagram represents the equilibrium of internal and
external forces [16]. In this paper, the form diagram is denoted by Γ and the force diagram by Γ†. More-
over, the force diagram’s topological elements are denoted by † superscript (Figure 2). These diagrams
consist of vertices vi, edges ei, faces fi, and cells ci. Each vertex, edge, face, and cell (vi

†,ei
†, fi

†,ci
†) in
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the force diagram corresponds to a cell, face, edge, and vertex (vi,ei, fi,ci) in the form diagram [16]. In
these structures, the magnitude of the force in each strut member (fi) in the form diagram is proportional
to the area of the corresponding face in the force diagram (A fi). In this technique, by applying different
subdivision to a force diagram, one is able to design various cellular strut-based structures in equilib-
rium (Figure 2a-h). Adding thickness to each edge of the form diagram proportional to the area of its
corresponding face results in a strut-based cellular funicular structure (CFS) [20].

1.3. Shellular structures in the context of graphic statics (shellular funicular structures)
Increasing the number of subdivisions in the force diagram results in a form diagram with smaller edges
and distributed forces in the members (Figure 2a-d and e-f). This process can finally result in the edges
with near zero-length, approximating a surface as a form diagram. Specific subdivision techniques in
PGS can approximate surfaces with anticlastic or synclastic curvatures as form diagrams [2]. Figure 3a
displays a tetrahedron as a force diagram corresponding to a node in equilibrium with two forces upward
and two downward as a form diagram (a node with an anticlastic curvature). This tetrahedron is generated
by connecting the end points of the two skew lines li† and l′i

†. Dividing these lines into equal segments
and establishing a tetrahedron between each two skew segments from each line, subdivides the force
diagram into multiple tetrahedrons, resulting in a discrete anticlastic surface as a form diagram (Figure
3a-d) [2, 21]. This type of subdivision is called the anticlastic subdivision. These lines (li† and l′i

†) play
the role of subdivision axis in the force diagram and the curvature axis in the form diagram (Figure 3d).
These lines are parts of two connectivity graphs, named labyrinths, connecting two segregated regions,
divided by the anticlastic surface in between [22]. Using the anticlastic subdivision technique, one can
design an anticlastic polyhedral surface, named a Shellular Funicular Structure (SFS) [1]. The labyrinths
as the subdivision axes in the form and the control handles in the force, facilitate the design process and
manipulation of the SFSs form-finding technique [21].

1.4. Problem statement and objectives
Although one is able to design various shellular funicular structures by designing different set of labyrinths,
the anticlastic subdivision in this process is computationally expensive, preventing interactive exploration
of various forms for an initial force diagram. In this article, a new method will be introduced to design
various forms from an initial force diagram and to approximate their geometry using a smoothing al-
gorithm. The methodology starts with identifying three sets of labyrinth graphs for the initial force
diagram and immediately visualizing their form diagrams as smooth and continuous surfaces. Followed
by exploring and finalizing the desired form, the force diagram will be subdivided across the desired
labyrinth graph to result in a shellular funicular form diagram (Figure 1). The paper concludes by eval-
uating the mechanical performance of continuous shellular structures in comparison with their discrete
counterparts.

2. Methodology
This section is divided to three main parts; first a technique will be introduced to translate a cellular fu-
nicular structure to its shellular counterpart, then a novel method will be introduced by which the user can
design three different labyrinth graphs for an initial tetrahedralized force diagram, and finally a method
for visualizing a two-manifold form diagram using the Catmull-Clark algorithm will be explained.
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Figure 4: The process of translating a cellular funicular to a shellular funicular structure in PGS; a.
initial force and form diagrams, b. tetrahedralizing the force diagram, c. finding the labyrinth graphs, d.
removing the faces corresponding to the labyrinths in the form diagram, and e. applying an anticlastic
subdivision to the labyrinth graphs.

2.1. Translating a cellular funicular structure (CFS) to a shellular funicular structure(SFS)
Translating the geometry of a cellular funicular structure to a shellular funicular structure in the context
of graphic statics requires subdividing the force diagram such that each vertex vi connected to a group of
edges ei and faces fi converts to a discrete anticlastic patch with smaller edges, approximating a discrete
anticlastic surface.

In the SFS design process, there are three main principles that are needed to be considered;

1. each pair of labyrinths in the form diagram should form a tetrahedron in between, corresponding
to an anticlastic node in the form diagram,

2. the force diagram includes two sets of labyrinths and each tetrahedron in the force diagram should
only include one labyrinth edge from each set which is in a skew position to the other,

3. each labyrinth’s edge in the force diagram can be connected to the labyrinth edges from the same
set, assuring that the resulting surface (form diagram) will divide the space into two subspaces.

The process of translating a CFS to a SFS starts with initial funicular diagrams (form and force diagrams)
that are designed with the Polyframe software or the 3DGS’s WebTool (Figure 4a) [23, 24]. According to
the first principle that is mentioned above, each force diagram should only include tetrahedrons, resulting
in 4-valency vertices or vertices that are connected to 4 edges in the form diagram which represent
an anticlastic curvature (Figure 4b). After subdividing the force diagram to a group of tetrahedrons
(tetrahedralization), two skew edges from each tetrahedron are selected as the labyrinths’ edges (Figure
4c). This step will be processed according to the SFSs’ main principles, assuring that each tetrahedron
only includes two labyrinths’ edges and each labyrinth’s edge is only connected to the labyrinth’s edges
from the same set [25]. It is important to notice that one may result in three different labyrinths’ graphs
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Figure 5: The process of finding a labyrinths’ graph in a tetrahedralized force diagram (a-f) and 3 different
types of graphs resulting from this algorithm (g, h, i) along with the corresponding form diagrams (j, k,
l) and removing the faces corresponding to the labyrinths’ graphs.

in this step which gives the user the opportunity to choose between them. This step has been explained in
detail in section 2.2. Each of the labyrinths’ graphs in the force diagram correspond to a group of faces in
the form diagram. Removing these faces from the form diagram results in a two-manifold form diagram
in which each edge is only connected to two faces (Figure 4d). Although the resulted form diagram is a
two-manifold geometry, it still needs to be subdivided to a certain degree in order to result in a smooth
shellular funicular form diagram. This step can be done in two ways, either the user can subdivide the
force diagram using an anticlastic subdivision that is explained in section 1.3 or can use a smoothing
algorithm which has been explained in section 2.3 (Figure 4e).

2.2. Finding three different labyrinth graphs for an initial tetrahedralized force diagram
After tetrahedralizing the force diagram, two sets of labyrinth graphs are needed to be selected each
edge of which are in a skew position to the other one. Figure 5 displays the process of finding labyrinth
graphs in a tetrahedralized force diagram. The process starts with a cube as a global force diagram that
is tetrahedralized to six tetrahedrons (Figure 5a). Starting from a random cell c†

i,1, two labyrinth edges
l†

i,1 and l′†i,1 which are in a skew position together are selected (Figure 5b-d). Next, one of the neighbor
cells will be selected which shares the labyrinth edge l′†i,1 with c†

i,1. Then, the second skew edge to l′†i,1
(l†

i,2) will be selected (Figure 5e). This process will be continued until all the cells are passed (Figure
5f,g). Figure 5g displays the labyrinth graphs that are selected for the initial force diagram. But we
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Figure 6: The process of designing the geometry of shellular funicular structures for a boundary condition
comparable to a column (a-d) and approximating it using the Catmull-Clark algorithm (e).

Figure 7: The process of designing the geometry of shellular funicular structures for a boundary condition
comparable to a bridge (a-d) and approximating it using the Catmull-Clark algorithm (e).
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observe that selecting different pair of labyrinth in the first step would result in new set of labyrinths. In
fact, selecting l′†i,2 and l†

i,2 or l′†i,3 and l†
i,3 as the labyrinth edges of the cell c†

i,1 would result in new
labyrinth graphs which finally generates new form diagrams. Since each tetrahedron has six edges or
three skew pairs, we result in three different labyrinth edges for each tetrahedralized force diagram. It
is important to notice that in some situations, due to a specific edge-cell connectivity (when each edge
in a tetrahedralize force diagram is connected to the odd number of cells) the process that is explained
above only results in one solution [25]. After finding the labyrinth graphs, one needs to remove the faces
in the form diagram corresponding to the labyrinth graph’s edges. In fact each edge in the force diagram
corresponds to a face in the form diagram. By removing the faces fi,1, fi,2, fi,3, f ′i,1, f ′i,2 and f ′i,3 in
the form diagram corresponding to the edges l†

i,1, l†
i,2, l†

i,3, l′†i,1, l′†i,2 and l′†i,3 respectively in the force
diagram, the first two-manifold form diagram will be generated (Figure 5g, j, m). Similarly, eliminating
faces correspond to the labyrinth edges in Figure 5k and l also result in new two manifold form diagrams
(Figure 5n and o).
Similar to the process that is explained above, for each tetrahedralized force diagram, if there is no
singularity in the system (i.e., all the edges in the force diagram are connected to an even number of
cells) [25], one can find three different labyrinth graphs corresponding to three different shellular form
diagrams.

Figures 6 and 7 display processes of finding labyrinth graphs for two tetrahedralized force diagrams that
are designed for different loading scenarios. Figure 6a, displays force and form diagrams of a cellular
system that is constrained from the top and the bottom, similar to the loading condition of a column.
After selecting a random cell from the force diagram, there are three different labyrinth sets for the cell
each of which comprising two edges in a skew position to each other (Figure 6b). Next, all the neighbor
cells will be parsed and three different labyrinth graphs will be determined (Figure 6c). Each of these
sets in the force diagram corresponds to a group of faces in the form diagram. Followed by removing
the corresponding faces in the force diagram, one results in a two-manifold form diagram (Figure 6d).
Similarly, Figure 7a-d illustrates the process of finding the labyrinth graphs for a new tetrahedralized
force diagram that is designed for a new boundary condition. This structure is constrained on two sides
and the top, comparable to the loading condition of a bridge.
Although applying an anticlastic subdivision to each pair of labyrinth edges in the force diagram results
in a smoother version of the form diagram (section 1.3), this process is computationally expensive and
time consuming. Therefore, there is a need for a faster smoothing algorithm to visualize the smooth
versions of the form diagrams so the user can select the desired form diagram and subdivide it (Figures
6e and 7e). Section 2.3 illustrates the mentioned smoothing algorithm in details.

2.3. Visualizing or subdividing a two-manifold form diagram to a smooth SFS
After resulting in a two-manifold form diagram, one needs to apply an anticlastic subdivision to the
force diagram to generate a semi-smooth shellular funicular form diagram. This process increases the
number of topological elements of the form and the force diagrams and is computationally expensive.
Therefore, it makes it challenging for the user to explore different alternatives. Furthermore, to develop
an interactive procedure for this technique, we need to generate the form quickly. Hence, we require an
smoothing algorithm which is fast and effective. Smoothing is the process of dividing the polygons of a
3-dimensional mesh into smaller polygons by relocating the mesh vertices to new locations such that

elements incident at that vertex have improved quality. This procedure repositions the vertices based on
adjacent vertices and is done iteratively for each vertex until the desired mesh quality is reached or it
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Figure 8: The process of smoothing a discrete anticlastic patch that is designed in the context of graphic
statics (a) and applying three levels of smoothing to it using the Catmull-Clark algorithm (b-d), along
with the Catmull-Clark subdivision process for a rectangular control-point mesh (e).

cannot be improved further [26]. The Catmull-Clark algorithm is a technique to create curved surfaces
using subdivision surface modeling [27]. The algorithm starts with an arbitrary mesh called the control
mesh (M0). In the SFS’s method, the two-manifold form diagram resulted from the tetrahedralized force
diagram with its labyrinths plays the role of the control mesh (Figure 8a). In the first iteration, each face
of this mesh is subdivided to a collection of quadrilateral subfaces, resulting in the mesh M1(Figure 8b).
In this process, a face with n edges is split into n quadrilaterals. Repeating the application of the same
subdivision procedure results in the next meshes (e.g., M2,M3, ...) which are the smoother versions of
the initial control mesh (Figure 8). In this procedure, each vertex of the mesh Mi+1 is associated with
either a vertex, edge or a face of Mi, called vertex point(v), edge point (e) and face point ( f ) respectively.
Each face point f j

i+1 is the centroids of the vertices of the face. An edge point e j
i+1 is computed as;

e j
i+1 =

vi + e j
i + f j−1

i+1 + f j
i+1

4
. (1)

In Figure 8e, the subscripts are taken modulo the valence of the vertex v0 (as the number of edges incident
to the vertex). Moreover, a vertex point vi is computed as;

vi+1 =
n−2

n
vi +

1
n2 ∑

j
ei

j +
1
n2 ∑

j
f i+1

j [28]. (2)

With this technique, the user is able to smooth a two-manifold geometry without applying an anticlastic
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Figure 9: Comparing the geometry of two meshes that are subdivided in the context of graphic statics
(M1) and using the Catmull-Clark subdivision (M2) by superimposing their geometry (a) and evaluating
the distance between two meshes and mapping the distance field on the mesh that is designed using the
Catmull-Clark algorithm (b).

subdivision to the force diagram. But the question here is whether this geometry is comparable to the
geometry of a shellular funicular structure that is generated via an anticlastic subdivision in PGS. Figure
9a displays a superimposition of the mesh M1 as the form diagram in PGS after applying three degree
of anticlastic subdivision to it, and mesh M2 as the continuous approximation of a two manifold form
diagram after applying the Catmull-Clark subdivision. Comparing the geometry of these meshes, we
observe that their curvature do not match perfectly (Figure 9b). Therefore, the structural capacity of the
specimen that is approximated with the Catmull-Clark algorithm might not be comparable to the one that
is generated in PGS.

3. Comparing the mechanical performance shellular funicular structures generated in PGS and
their continuous approximation

In this section, a numerical structural analysis is performed to study the mechanical behavior of three
shellular funicular structures shown in Figure 10a-c. The first specimen is named subd1-not-smooth
which is the same two-manifold form diagram before smoothing that is generated in Figure 6d, bottom
(Figure 10a). The second specimen is named subd1-smooth which is the smooth version of the previous
specimen via Catmull-Clark algorithm (Figure 10b). The third specimen is named subd5-smooth which is
the smooth version of the first specimen via the anticlastic subdivision. In fact this specimen is subdivided
to the fifth level in the polyhedral graphic statics’ context (PGS), meaning that each tetrahedron in the
force diagram of the first specimen is subdivided to 25 tetrahedrons corresponding to 25 valency four
vertices connect to each other in the form diagram. These specimens are made out of structural steel
and they have identical volume density. A tetrahedral mesh consist of around half a million elements are
generated for all specimens with similar boundary condition, loading speed and type of elements. After
the finite elements analysis, we observe that the smooth specimens have better structural performance
since they distribute the stress evenly in the structure compared to the specimen without smoothing.
Comparing the structural performance of the smooth specimens, the subd5-smooth specimen has better
structural performance and can distribute the stress in the structure more consistent compared to the
subd1-smooth since we have already assured that in this specimen, the thrust lines are located inside
the thickness of the material. But in the second specimen, some part of the thrust lines before applying
the Catmull-Clark subdivision is outside of the thickness of the material. Therefore, in order to assure
that the smoothing process is structurally dependable, one needs to first smooth the form diagram in the
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Figure 10: Mises stress contour of the subdivision 1 before smoothing (a), the subdivision 1 after smooth-
ing (b), and the subdivision 5 after smoothing (c), with the same volume density along with comparing
the load-displacement curves of the specimens.
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context of graphic statics using the anticlastic subdivision to a certain degree and then apply the Catmull-
Clark subdivision. By this, one can make sure that the thrust lines of the structure are located inside the
thickness of the material. Although it is worth to mention that this operation depend on the thickness of
the material. Therefore, determining the minimum thickness for a specimen depends on its thrust lines,
whether they are located in the thickness of the material or not. But the Catmull-Clark subdivision is a
fast and effective algorithm which can help the user to visualize the smooth version of the form quickly.

4. Conclusion and future directions
This paper discussed a novel technique for exploring different design alternatives for shellular funicular
form diagrams. The authors showed that it is possible to identify three sets of labyrinth graphs for the
initial force diagram, resulting in three different two-manifold form diagrams. Furthermore, a smoothing
algorithm is explored for visualizing the smooth version of the form diagrams quickly, enabling the user
to do interactive explorations with the structure. Finally, the paper concluded by evaluating the mechan-
ical performance of continuous shellular structures (that are subdivided via Catmull-Clark subdivision)
in comparison with their discrete counterparts that are subdivided with the anticlastic subdivision in the
context of graphic statics. In future, the authors intend to use this technique to develop an interactive
application for generating shellular funicular structures in the context of graphic statics.
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