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This research bridges the gap between the numerical layout optimization method and the geometry-
based analysis and design method of graphic statics. The study connects the two methods for the appli-
cation of strut-and-tie models in reinforced concrete design. It suggests a new algorithm for the algebraic
graphic statics of indeterminate trusses inspired by the layout optimization method. This research also
contributes to the field of graphic statics by providing a formulation that generates form and force dia-
grams in a continuum, where the topology for none of the diagrams is initially provided.
The generation of strut-and-tie models for reinforced concrete has extensively relied on optimization

methods, which are helpful techniques for the initiation of a load path inside a continuous domain.
However, the resulting truss model is a single answer, and there exists limited control to methodically
modify the topology or the force distribution of the model. Furthermore, the minimized-weight truss
does not guarantee a practical strut-and-tie model or an optimized performance of a reinforcement
design.
In contrast to the conventional optimization techniques with a single solution, the intuitive method of

graphic statics provides the designer with a vast design space. It also offers explicit control over the
geometry and force distribution of the generated truss models. The algorithm provided in this paper is
applied to various continuous domains to systematically generate a variety of strut-and-tie models, their
force diagrams, and constant stress fields. The production of the optimized truss model and its force dis-
tribution allows the direct interactive manipulations of the design while observing the changes in the
stress fields and the reinforcement arrangement. The open-source repository of the implemented inte-
grated algorithm and the examples used in this paper are also provided.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access articleunder the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The truss model, also known as strut-and-tie model (STM), is a set
of compressive struts and tensile ties, which represents the load
transfer mechanism in a reinforced concrete member [1,2]. The
model has been intuitively developed to understand the behavior
of cracked reinforced concrete, where concrete only contributes
to the compression and steel is activated in tension [3,4]. The con-
cept has later found justification in the lower bound theorem of
plasticity [5–7]. Thus, the method results in conservative solutions
[8]. A combination of STM with stress fields is typically used in
practice to provide safe solutions. STM and stress fields are com-
plementary in satisfying equilibrium and yield criteria of the lower
bound theorem of plasticity [7,9].

The strut-and-tie method has a tremendous educational advan-
tage over the finite element analysis (FEA) methods as it simplifies
the understanding of bending and shear transfer inside a concrete
element, thus it aids in a simplified calculation of required rein-
forcement quantity and location. Its combination with stress fields
can also assure the capability of concrete to handle compressive
stresses. Other than educational value, the method is used in prac-
tice and is introduced in concrete design guidelines [10–13] for
both structural design and analysis [7,14]. Although the conven-
tional FEA methods can provide more advanced analysis with
refined material models, it is more of an analysis approach than
a design tool. FEA rather focuses on assessing the input problem
than providing the freedom to decide on the flow and arrangement
of the tensile and compressive forces, which could dictate various
structural behaviors. With this in mind, truss models and FEA
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could also be used in parallel to assure a sound design, as we will
demonstrate in the example of Section 3.3.

1.1. Generating a strut-and-tie model

Initially, STM is created intuitively and iteratively, similar to the
load path method introduced by Schlaich et al. [8]. Later, various
formulations of FEA method were employed, where the model is
formed by aligning the struts and ties according to the direction
of principal stresses (Fig. 1(a) and (b)) [8,14,15]. Other than getting
help from FEA, STMs were generated using other methods such as
topology optimization (TOPOPT) (Fig. 1(c) and (d)) [16–19] and lay-
out optimization (LAYOPT) also known as ground truss optimization,
and discrete/truss topology optimization (Fig. 1(e) and (f)) [20–22].

TOPOPT and LAYOPT minimize the material distribution in con-
tinuous and discrete design domains, respectively, where the con-
centration of the material as the result of the optimization is on the
path of higher stresses. Similar to principal stresses from FEA, the
output material pattern of TOPOPT could hint on manual conceiv-
ing of a truss model. Further analysis is also needed to calculate the
internal forces of the STM. On the other hand, the solution of
LAYOPT is the truss member forces, where the non-zero forces
result in an in-equilibrium truss model. Therefore, the use of
LAYOPT to initiate an STM is automatic and requires fewer steps.

1.2. Problem statement

All the mentioned techniques help in initiating and understand-
ing of a load transfer mechanism inside a given domain accounting
for the boundary conditions. However, the resulting trusses can
include impractical tension–compression arrangements for the
design using STM. The attention has typically given to more elab-
(b)

(d)

(e) (f)

(c)

(a)

Fig. 1. (a) Principal stresses from FEA; (b) devised STM based on the direction of
principal stresses in (a); (c) material distribution pattern from TOPOPT [23]; (d)
devised STM from (c); (e) ground truss for LAYOPT; (f) non-zero-force truss memb.
ers from LAYOPT.
orate formulations or more realistic material models
[14,15,19,21,22,24–27]. The examples of Fig. 1 show how the
devised truss models have impractical diagonal reinforcements.

A valid STM usually follows structural engineering conventions
and seeks more facile reinforcement fabrication. So, it requires
proper reinforcement inclination (i.e., typically horizontal or verti-
cal) and location, acceptable angles between struts and ties (i.e.,
more than 25 degrees according to the guidelines), and no overlap-
ping tension–compression members [8,12]. One could modify the
FEA/optimization equations by embedding the rules for achieving
a valid STM, although depending on the formulation, the process
could turn out as counter-intuitive. In the end, optimization meth-
ods produce a single solution for the minimized-weight truss,
which does not guarantee an optimized performance of a rein-
forcement design. Furthermore, these methods provide the
designer with limited control to modify the output topology and
its force distribution to generate multiple valid solutions and
hence, varied structural performances.

1.2.1. The STM and the geometry-based design methods
The geometry-based method of graphic statics (GS) was applied

in the literature while creating STMs for reinforced concrete ele-
ments [7,28–30]. This method’s application had various reasons
such as assuring the equilibrium of forces, controlling the magni-
tude of the internal truss forces, and creating multiple STM solu-
tions for a given problem.

The method of GS is a potent design technique that has been
practiced and researched by many structural designers and
researchers since the early nineteenth century [31–41]. Graphic
statics provides explicit control over the truss’s geometry and its
internal force magnitudes within the same state of global/external
equilibrium. The availability of the force in a geometric setting pro-
vides the opportunity: (i) to create a variety of solutions through
manipulation or subdivision of the force diagram [42–46]. (ii) to
optimize trusses using load path minimization algorithms [38,47].
(iii) to create constant stress fields using the geometrical summa-
tion (Minkowski sum) of the form and force diagrams [48–51].

1.2.2. Graphic statics in a continuous field
Even though GS provides the freedom to modify the form or

force diagrams while maintaining the equilibrium conditions, it
requires the definition of a starting topology for the form or force
diagram, where the materialization of the form typically happens
in the next step. So, the extraction of a load path for a given mate-
rialized domain, such as a reinforced concrete block, under speci-
fied boundary conditions using GS requires interactive
procedures or a manual definition of a starting geometry
[7,28,29,47]. Furthermore, the algebraic formulations of GS [52–
54] generate the dual diagram (force or form) automatically, but
still needs the input for the primal diagram (form or force).

1.2.3. Summarizing the limitations of current techniques
To sum up, several techniques such as GS, FEA, TOPOPT, and

LAYOPT have been used and helped in creating strut-and-tie mod-
els. Although the method of GS is promising in generating multiple
solutions and assuring the equilibrium, it requires a starting geom-
etry for one of the form or force diagrams. In contrast, the opti-
mization or FEA methods help in initiating and understanding of
a load transfer mechanism. However, they have a black-box nature,
and they provide the designer with limited control to modify the
output topology or its force distribution. Besides, their formula-
tions require modifications to result in practical truss models.

This study aims to utilize the optimization methods’ strengths
in the automatic generation of a valid model. So, the drawback of
GS in requiring a pre-defined form or force diagram is avoided.
LAYOPT is selected since, as mentioned, it requires fewer steps to



Table 1
Nomenclature for the notations used in this paper and their corresponding
descriptions.

Topology Description

C primal/form diagram
C� dual/force diagram
S Minkowski sum of C and C� (constant stress fields)
R reinforcement layout
vgt # of vertices of ground truss
egt # of edges of ground truss
v # of vertices of C
v int # of internal vertices of C
e # of edges of C,
f # of faces of C
v� # of vertices of C�;v� ¼ f
e� # of edges of C�; e� ¼ e
f � # of faces of C�; f � ¼ v int

Matrices

C� vertex-edge incidence matrix of C�

Aopt equilibrium matrix of LAYOPT
Aags equilibrium matrix of AGS
Ad;Aid partitions of Aags

�Aags reduced-row Aags

��Aags
reduced-row-column Aags

Q diagonal matrix of q
L� Laplacian of C�

�B face-edge matrix of C
B face-edge matrix of C with additional rows
I identity matrix

Vectors

u x-coord differences of v
v y-coord differences of v
x� x-coords of v�

y� y-coords of v�

q solution of the AGS equilibrium equation
qd;qid partitions of q
�qd force density of the ground truss members
�qd;diag force density of the ground truss diagonal members
l length of the ground truss members
le edge lengths of the reconstructed C
a cross-sectional area of the ground truss members
b assigned edge lengths
x vector of ones
fgt force magnitude of the ground truss members
fgt;diag force magnitude of the diagonal ground truss members
f external loads
fr external loads and support reactions

Parameters

rC factored concrete yield stress in compression
rT factored steel yield stress in tension

Other

V total volume of the structure
nr # of support reactions
k # of independent densities (lenght of qid)
b width of stress field
t thickness of concrete element
a scale factor for Minkoswki sum
c scale factor for C�

U required reinforcement
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generate a truss. Furthermore, the goal is to engage GS as a highly
capable technique to help create a design space, where the
designer could alter the truss geometry and its member forces.
Thus, the disadvantage of optimization in providing a single solu-
tion is avoided.

1.3. Objectives and contributions

The objective of this research is to bridge the gap between
LAYOPT and GS by utilizing their advantages. Therefore, as a contri-
bution to the field of graphic statics, the algorithm of this paper can
be used to generate form and force diagrams for a continuum under
specified boundary conditions, where the topology for none of the
diagrams is initially provided. Furthermore, contrary to the conven-
tional optimization techniques with a single solution, the availabil-
ity of the form and force diagrams facilitates further modifications
and improvements of the initial solutions.

The novel algorithm implements the algebraic graphic statics
(AGS) of an indeterminate truss inspired by the LAYOPT technique.
Therefore, there is no requirement for pre-assigning force densities
to specified members of an indeterminate form diagram. This
paper extends the scope of the previous research of the authors
presented in [50] on the integration of algebraic graphic statics
(AGS) into a LAYOPT algorithm by providing a detailed explanation
of the methods, their limitations, and the combination of the form
and force diagrams using the Minkowski sum operation to produce
stress fields.

The paper then takes the research to a further stage, where with
the help of GS, the manipulation of the produced geometry with an
immediate update of the internal forces is feasible. The generation
of the optimized truss model and its force distribution allows the
interactive modifications, where the changes in the stress fields
and the reinforcement arrangement are observable. As a result,
multiple valid STM/stress field solutions and reinforcement
designs could be produced.

1.4. Paper outline and nomenclatures

Section 2 provides the theoretical background for the study in
the following order: the definition of ground truss and the equa-
tions of LAYOPT (Section 2.1); the properties of form and force dia-
grams and algebraic formulation of GS (Section 2.2); an integration
of LAYOPT, AGS, and Minkowski sum operation into a computa-
tional set-up to initiate an STM, its force diagram, and constant
stress fields (Section 2.3); and a method to modify the initially gen-
erated diagrams using GS (Section 2.4). Section 3 shows the imple-
mentation of the integrated algorithm on several boundary
conditions, where in the next step, GS helps modify the initial solu-
tions, and Section 4 concludes the paper with an outlook to the fur-
ther steps of the research.

Table 1 presents the notations used in this paper. Matrices and
vectors are denoted by bold uppercase and lowercase letters,
respectively. The topological information of the form and force dia-
grams are represented with italic letters and italic letters with an
asterisk (*) sign, respectively.

In all figures, except Fig. 14, the red color shows tension, and the
blue color displays compression forces/stresses. In Fig. 14(3), red
shows compression and blue tension.

2. Methodology

The flowchart of Fig. 2 illustrates the research methodology.
The main goal of this section is to engage GS in the automatic
process of generating STM solutions and their force diagrams
without the need to pre-define the form diagram. We explain
the equations of LAYOPT, the properties of the reciprocal
diagrams, and the algebraic formulation of graphic statics. The
implementations of LAYOPT, AGS as well as the Minkowski sum
operation will then be integrated into a single computational
set up to initiate a valid truss model, its force diagram, and con-
stant stress fields. In Sections 2.4 and 3.2, we use the generated
form and force diagrams to manipulate the STM geometry and
its force distribution to create other valid solutions and reinforce-
ment designs.



Fig. 2. Flowchart of the research methodology.

(a)

(c) (d)

(f)(e)

(b)

Fig. 3. (a) First-order ground truss; (b) full ground truss; (c) and (d) optimum
layouts for (a) and (b); (e) and (f) optimum layouts for (a) and (b) with the
additional constraint in (1e) (zero or minimal forces in (c)-(f) are. in light gray).
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2.1. Layout optimization

In Section 1.1, we discussed that using LAYOPT helps in the
automatic generation of a truss model and therefore requires fewer
steps compared to using TOPOPT or FEA. In this section, we apply
the plastic formulation of LAYOPT, which is based on equilibrium
and not compatibility or stress–strain relations [55]. The linear
nature, i.e., linear force-stress relationship, of this formulation
allows the objective function to either aim for a volume or a load
path minimization, which theoretically yields the same output
[56]. The total load path of the truss is obtained by the summation
of each truss member’s internal force multiplied by its length. The
minimization of the load path is a common objective while utiliz-
ing GS methods [38,47]. Although in this paper, the input geometry
(i.e., a ground truss) is created automatically, the equations are lin-
ear, and the location of the nodes stay unchanged.

The starting geometry for LAYOPT is a ground truss. The ground
truss is defined in two common ways; first-order and full ground
truss (e.g., Fig. 3(a) and (b)). For a ground truss with egt members
(edges), vgt nodes (vertices), and nr support reactions, the plastic
formulation is given as
min
a;fgt

V ¼ lTa ð1aÞ

s:t: Aoptfgt ¼ f ð1bÞ
�rCa 6 fgt � l 6 rTa ð1cÞ
a P 0 ð1dÞ
fgt;diag 6 0 ð1eÞ

where V is a scalar for total volume of the structure, lT ½1� egt � and a
½egt � 1� are the vectors of length and cross-sectional area of the
ground truss members. The objective in (1a) is to minimize the total
volume subjected to three constraints: (1b) the equilibrium con-
straint with Aopt the ½ð2vgt � nrÞ � egt � the equilibrium matrix built
from directional cosines of the members, fgt the ½egt � 1� member
forces vector and f the external loads vector. (1c) the stress con-
straint with rC and rT as factored yield stresses in compression
(concrete) and tension (steel). (1d) the limitation of the areas to
non-negative values. (1e) the limitation of force magnitudes in
the diagonal members, fgt;diag , to non-positive values (i.e., defined
as either compressive or zero forces).

The optimization outputs (design variables) are the ground
truss member forces, fgt , and cross-sectional areas, a. Members
with zero or minimal cross-sectional areas, i.e., also with zero or
minimal forces, will be removed, leading to a truss topology as a
subset of the ground truss. Fig. 3(c) and (d) show the results of
the original LAYOPT formulation, i.e., with the constraints (1b)-
(1d), and Fig. 3(e) and (f) show the solutions with all constraints.
The additional constraint in (1e) makes the reinforcement direc-
tions more practical. The results of Fig. 3 illustrate their depen-
dency on the ground truss definition. To avoid overlapping
tension–compression members and to have a model with practical
reinforcement layouts, we decided to use the first-order ground
truss and the constraints (1b)-(1e) as a base to initiate an STM.



S. Mozaffari et al. / Computers and Structures 240 (2020) 106335 5
2.2. Graphic Statics

In this section, we explain the concept of reciprocal diagrams
and the algebraic formulation of GS. Using GS offers explicit control
over the geometry of a truss and its internal force magnitudes
within the same state of external equilibrium. Although, applying
this method in generating multiple STM solutions requires a start-
ing geometry that accounts for the design domain constraints and
boundary conditions. In the next section, we use the optimized
truss geometry from the LAYOPT algorithm as the starting geome-
try for GS.

GS’s form and force diagrams represent the geometry of a truss-
like structure and the force magnitudes of its members, respec-
tively. The reciprocity between the two diagrams assures global
and nodal equilibrium and provides access to the member force
magnitudes and support reactions. Fig. 4(a) and (b) show an exam-
ple of a truss or form diagram, C, and its corresponding force dia-
gram, C�. The length of each edge e�i in C� is proportional to the
force magnitude in its reciprocal edge ei in C. For each nodal force
equilibrium in C, there exists a closed force polygon in C� (Fig. 4(d)
and (e)). The global equilibrium between the external loads and
support reactions is also a closed force polygon in C� (Fig. 4(c)).
For example, the polygon surrounding the f �i face in Fig. 4(b) shows
the equilibrium of forces at node v i in Fig. 4(a). Similarly, each
node v�

i in C� has a reciprocal face f i in C. Note that the lengths
of the edges in C� are proportional to the force magnitudes, and
the force diagram scale, c, is calculated, for instance, by finding
the ratio of the fj external force magnitude, to its reciprocal edge
length, le�

j
.

As a result of reciprocity, the number of truss nodes, v int , of C
are equal to the number of faces in C�, which is equivalent to the
number of closed polygons (loops) in Fig. 4(d) and (e). Also, the
number of edges of C and C� are equal. The load and support
reactions in C count as edges. The edges of C� count as the four
green edges in Fig. 4 and non-repetitive blue and red edges in
Fig. 4(d) and (e). Finally, the number of faces of C is the same
as the number of vertices of C�. The faces count as four internal
faces and three virtual faces between the load and support
locations.
2.2.1. Algebraic Graphic Statics
The algebraic formulation of graphic statics is a non-procedural

approach to generate the force diagram given a form. As the
Fig. 4. (a) Form diagram, C; (b) force diagram, C�; (c) global force polygon (external
equilibrium); (d) force polygons of the boundary nodes (equilibrium at the nodes
connected to external load/support reactions); (e) force polygons of the internal
nodes.
method is fully explained in [52], the focus here is limited to the
fundamental equations and concepts.

For a form diagram with e edges (including the edges related to
the external loads and supports), v vertices, and v int internal ver-
tices (excluding the leaf vertices), the equilibrium equation follows

Aagsq ¼ 0 ð2Þ
where Aags is the ½2v int � e� equilibrium matrix and q is the ½e� 1�
vector of force densities. Force density is the ratio of the member
force to its length. This equation is similar to the equilibrium con-
straint in (1b). The differences are: (i) instead of the member forces
vector fgt , force densities vector q is used. (ii) the right side of the
equation is a null vector since q includes the density of the leaf
edges, i.e., the edges related to external loads and support reactions
with arbitrary lengths, and Aags has the geometric information of the
leaf edges. (iii) instead of the directional cosines of the members,
Aags only includes the directional coordinate differences (the divi-
sion by the member length is compensated in the force densities
vector q).

The unknown or dependent partition of q;qd ½ðe� kÞ � 1�, if Ad

is square and non-singular, is calculated as

qd ¼ �A�1
d Aidqid ð3Þ

where qid ½k� 1� is the vector of given or independent densities,
which can be assumed as the density of external loads, and Ad

½2v int � ðe� kÞ� and Aid ½2v int � k� are the partitions of Aags. Since
Ad is considered a square matrix, 2v int ¼ ðe� kÞ.

By reconstruction of q after the calculation of qd from (3), the
coordinates of the force diagram are obtained as

x� ¼ L��1
C�Qu

y� ¼ L��1
C�Qv

ð4Þ

where x� and y� ½v� � 1� are the vertex coordinates of the force
diagram, C� ½v� � e� is the vertex-edge incidence matrix represent-
ing the topology of the force diagram, Q ½e� e� is the diagonal
matrix of vector q;u and v ½e� 1� are the coordinate differences

of the form diagram, and L� ¼ C�C�T is the ½v� � v�� Laplacian of
C�. C�;u, and v are known, once the geometry of the truss (e.g.,
Fig. 4(a)) is given. Having y�;x�, and C�, one can plot the force dia-
gram (e.g., Fig. 4(b)).

2.2.2. Limitations of the algebraic formulation
There are some limitations/challenges regarding the AGS

method:

(i) In the case of indeterminate forms, the given or independent
densities, qid, cannot only be assumed as the densities of the
external load edges. The independent edges are selected
based on the non-pivot columns of the reduced row-echelon
form of Aags [52]. Therefore, there exist several solutions,
based on what one selects as the densities for those edges.
For example, in the case of multiple external loads, if the
edges related to the external loads are not a part of indepen-
dent edges, then, to maintain the external load values as
fixed magnitudes, it is not always trivial to find the correct
combination of independent edges.

(ii) To define the incidence matrix C� representing the topology
of force diagram (i.e., the dual graph), the geometry of the
form needs to be a planar straight-line graph with no over-
lapping spaces. The algorithms of creating a planar graph
are complicated and not always result in a useful form [52].

(iii) AGS still requires the definition of a starting geometry,
which considers the boundary conditions and geometrical
constraints of the design domain.
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Fig. 5. (a) Node v i and its connecting edges; (b) the rotated force (dual) polygon for
node v i; (c) Minkowski sum of the reciprocal edges in (a) and (b) with the scale
factor a; (d) Minkowski sum for all the reciprocal edges in Fig. 4(a) and (b); (e)
adjusted stress fields to avoid compression. field overlaps.
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2.3. Integrated algorithm

Section 1.3 mentioned that the aim is to overcome the draw-
backs of optimization techniques and the GS method by integrating
the advantages of LAYOPT and GS. In this section, we combine the
formulations of LAYOPT and AGS for the automatic creation of a
truss model and its force diagram. The AGS equilibrium matrix is
modified and used along with the force densities as the new design
variable in LAYOPT equations. The immediate advantage is that the
output force densities can be directly used in (4) to generate the
force diagram. Section 2.4 shows how the primary reciprocal dia-
grams will be then modified to construct other STM solutions.

Similar to LAYOPT, the integrated algorithm avoids a manual
initiation of a starting topology [38,47] by generating the ground
truss automatically. Also, since the optimization runs regardless
of the indeterminacy of the starting or resulting truss, the AGS dis-
advantage of requiring the pre-assignment of independent force
densities is removed. Furthermore, to avoid having issues, while
constructing C�, with the non-planar first-order ground truss, a
node is introduced at the intersection of the ground truss crossed
members. The modified optimization formulation is given as

min
a;�qd

V ¼ lTa

s:t: ��Aags�qd ¼ f
�rCa 6 �qd � l 6 rTa
a P 0
�qd;diag 6 0

ð5Þ

where ��Aags is a ½ð2vgt � nrÞ � egt� modified Aags matrix, where the
rows related to the support reactions and the columns correspond-
ing to external loads and support edges are removed. �qd ½egt � 1� is
the vector of force density for the ground truss members, �qd � l is
the element-wise product of the force density and length vectors,
and �qd;diag is a subset of �qd. Note that here vgt is equivalent to v int

and egt to e� ðkþ nrÞ. The design variables are �qd and a.
The vector �qd from the optimization in (5) is used to construct

the complete force density vector q, which includes densities of
the external loads and support reactions. The support reactions
can be calculated as

fr ¼ �Aags�qd ð6Þ
where the non-zero elements of fr ½2vgt � 1� are the external loads
and the support reactions, and �Aags is a ½2vgt � egt � modified Aags

matrix, where the columns corresponding to external loads and
support edges are removed. The diagonal matrix of q;Q , along with
the generated C�;u, and v of the output truss is then used in (4) to
calculate the coordinates of the force diagram.

2.3.1. Stress fields
The availability of the form and force diagrams allows the cre-

ation of constant stress fields using the Minkowski sum operation
[48–50]. Assume vertex v i, its connecting edges, ei; ej, and ek, and
their rotated reciprocal vectors, e�

i ; e
�
j , and e�

k in Fig. 5(a) and (b).
Minkowski sum of ei and ae�

i is illustrated as the resulting rectan-
gular area from offsetting edge ei in the direction of vector ae�

i from
v0 in Fig. 5(c). The same procedure follows for ek with ae�

k from
point v1, then, for ej with ae�

j from point v2. The resulting rectan-
gular areas along truss bars and the polygon at the nodal region
(Fig. 5(c)) are similar to constant stress fields with hydro-static
nodes (i.e. the geometry of each node is obtained using the con-
stant factored yield compressive strength rC) [9,57]. Fig. 5(d) is
formed by following the same procedure for other vertices and
their connecting edges. Note that Fig. 5(d) is not immediately
usable as stress fields since the compression fields overlap at some
nodes. Therefore, adjustments required to make the stress fields
valid by re-arranging the dual edges at the nodes (see Fig. 5(e)).

The width bi of each stress field is defined in (7) and is related to
the member force magnitude cle�

i
, the thickness of the concrete ele-

ment t, and the concrete factored yield compression stress rC .
Therefore, the factor a in Fig. 5(c) is considered as 1

rC t
.

bi ¼
cle�

i
rC t

ð7Þ

Fig. 6 show the three outputs of the integrated algorithm. In the
examples of this paper, as a convention by structural engineers, the
center lines of the tension fields are shown (Fig. 6(d)).
2.3.2. Effect of the mesh size
Before introducing a ground truss, the input design domain is

discretized into simple square meshes. The decision on the mesh
size of the defined domain is arbitrary, and the size could affect
the resolution of the optimization solution by changing the con-
nectivity pattern of the ground truss, for example, using a twice
finer mesh than the mesh used in Fig. 6(a), does not change the
solution in Fig. 6(f), although, in Fig. 7(e), the resulting truss with
a finer mesh has more members compared to Fig. 7(b). Further-
more, in Fig. 7(e), the indirectness of the path between external
load and supports causes a finer redistribution of the internal
forces compared to Fig. 7(b), which is evident by comparing the
force diagrams in Fig. 7(c) and (f).

Instead of playing with the mesh size to change the resolution
of the STM solution, in Section 3.2, we show how, with the help
of GS, the force and form diagrams can be subdivided to redis-
tribute the forces systematically.



Fig. 6. (a) Input boundary conditions and ground truss; (b) output form diagram
(STM); (c) output force diagram; (d) output stress fields; (e) input boundary
conditions and ground truss with finer mesh; (f) output form diagram for (e).

(a) (b)

(d) (e) (f)

(c)Г Г*

Г*Г

eiei

ei
*

eiei

ei
*

eiei

ei
*

eiei

ei
*

Fig. 7. (a) and (d) Boundary conditions and ground truss inputs; (b) and (e) output
optimum forms (zero or minimal forces are in light gray); (c) and (f) output force
diagrams.
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2.4. Reconstruction of the STM from the modified force diagram

So far, the focus was on the implementation of the integrated
algorithm, which runs the optimization in (5) to automatically cre-
ate a valid truss model, then uses (4) to construct the force dia-
gram, and lastly implements Minkowski sum to create stress
fields. Now, that we have initiated a model and its force diagram,
we can use the reciprocal relationships of GS to modify them.
One way to modify the initial results is to change the force diagram
and update the form subsequently. This way, one can assure the
equilibrium by keeping the force polygons closed and control the
magnitude of the forces. The updating of the form diagram after
modifying the force diagram uses a different method than the bi-
directional graphic statics introduced in [53], where only the nodal
movements of the force diagram are addressed. To clarify the mod-
ification process, assume the outputs of the integrated algorithm in
Fig. 8(b) and (c). Consider adding a stirrup on the left side of the
truss. The steps of the modification process are as follows:

(i) Make a self-stressed network of the truss model by connect-
ing the end vertices of the load edges, as in Fig. 8(d). That
creates an extra face, [v4;v5;v6;v7]. These new ”virtual”
edges help in the reconstruction of the form in the last step.

(ii) Update the force diagram to include the forces of the virtual
edges by running an AGS algorithm using equations (2), (3),
and (4) as in Fig. 8(e). Fig. 8(f) shows the force polygons in
the updated force diagram.

(iii) Apply changes to the force diagram, as in Fig. 8(g). This step
could include removing/adding edges and vertices from/to
the force diagram. One needs to make sure that the modified
shape has closed force polygons.

(iv) Find the edge lengths of the new form diagram. In this step,
we find the faces of the new form using the new closed force
polygons. Around each face, we select a consistent orienta-
tion of the edges. Since each face provides a closed loop of
edges, the sum of edge vectors has to be the zero vector.
Each face provides two equations for the edge lengths, i.e.,
the summation of x and y coordinates of the edge vectors
equals zero. This can be written in an algebraic format [58]
as
�Ble ¼ 0 ð8Þ

where �B is a ½2f � e� matrix, that describes the geometry of
the form graph, with f number of the faces in the new form
diagram and e the total number of edges including the leaf
and virtual edges. le ½e� 1� is the vector of edge lengths of
the new form diagram and the solution of (8).
To have a unique solution for (8), one requires to assign edge
lengths to some of the unchanged edges. The number of edge
lengths that can be assigned depends on the geometric
degrees of freedom of the form [58]. The geometric degree of
freedom is 3 for the unreconstructed form of this example.
Since the virtual edges normally stay unchanged, here we
assign the edge lengths for (v6;v7), (v4;v7), and (v4;v6).
The unique solution for the edge lengths of the new form is

le ¼ Bþbþ ½I� BþB�x ð9Þ

where matrix B ½ð2f þ 3Þ � e� has three additional rows com-
pare to �B. Each additional row represents one of the edges
with an assigned edge length, which is a vector with zeros
everywhere, except 1.0 at the location of that edge. Bþ

½e� ð2f þ 3Þ� is the Moore–Penrose inverse of B [59,60]. b is
a ½ð2f þ 3Þ � 1� vector of zeros, except in the last three ele-
ments, where it includes the edge lengths of the selected



Fig. 8. (a) Input boundary conditions; (b) output truss model; (c) output force diagram; (d) self-stressed form; (e) force diagram for (d); (f) force polygons in (e); (g) modified
force diagram; (h) force polygons in (g); (i) reconstructed form diagram.
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edges. I is the ½e� e� identity matrix and x is a ½e� 1� vector
of ones.
(v) Reconstruct the new form. Now that the edge lengths for the
new form diagram are known, it can be reproduced. The
reconstruction uses a basic breadth-first search algorithm
[61]. It starts from a fixed nodal location like node v4, then,
finds the location of its neighboring nodes using the vector
directions (i.e., edge orientations) picked while constructing
the �B matrix and the edge lengths obtained from (9). The
same procedure will follow for the neighbors of the
neighboring nodes until all the nodes are covered. Fig. 8(i)
shows the new solution for the truss model, the virtual
edges can be removed from force and form diagrams, after
the reconstruction.

2.5. Implementation

An open-source repository is generated to implement the
integrated algorithm for the examples presented in this paper
[62]. The computation time for the integrated algorithm is



Fig. 9. (a) Input design domain and boundary conditions; (b) output form diagram (STM); (c) output force diagram; (d) output stress fields.
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less than one second. All the algorithms are written in Python
[63], where the algebraic implementations use NumPy and
SciPy packages [64,65], the optimization is performed with
the CVXPY package [66], which solves convex optimization
problems. In our case, an interior-point method is used to
solve the linear optimization problem. Also, the data struc-
tures such as meshes and graphs are created or modified
using COMPAS [67].
Fig. 10. Step-wise subdivision of external load through arching/funicular action(1a)-
(combination of the funicular and fan-shaped behavior); (2a)-(2e), (4a)-(4e), and (6a)-(6
3. Results

The previous section showed how the integrated algorithm
automated the process of generating a valid truss model, its force
diagram, and stress fields accounting for a continuous design
domain under specified boundary conditions. It prevented the
pre-definition of the form diagram and independent force densities
of the indeterminate ground truss. These are typically required for
(1e) and fan-shaped behavior (3a)-(3e); (5a)-(5e) step-wise addition of stirrups
e) step-wise modifications of their corresponding force diagrams.
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the production of the force diagram with the AGS formulation. The
previous section also showed how, with the help of GS, one could
modify the initial force diagram and reconstruct the form to pro-
duce a new strut-and-tie solution. Section 3.1 shows examples
for the application of the integrated algorithm to several boundary
conditions, and Section 3.2 provides examples for modification of
the original form and force diagrams to generate new solutions.

3.1. Integrated algorithm

Fig. 9(1)-(7) shows the application of the integrated algorithm
(i.e., Eqs. (4) and (5) along with the implementation of Minkowski
sum) to a simply-supported beam, a stepped beam, a frame joint, a
dapped-end beam, a hammerhead pier, a wall with an opening,
and a corbel column. Other than initiating a valid STM, the method
enables the visualization of forces through the force diagram and
illustrates the concrete element’s sufficiency to carry compression
through constant stress fields.

3.2. Modifications with graphic statics

In order to modify the original solutions with the help of GS,
proper procedures, such as adding reinforcement in specific
Fig. 11. (1a)-(1c) and (3a)-(3c) Original force diagrams, STMs, and stress fields from Fi
modified force diagrams, STMs and stress fields with additional diagonal reinforcement
directions/locations and subdivision of compression, tension, or
external loads, could be adopted. The new strut-and-tie solutions
can be reconstructed after the modifications of the force diagram,
as explained in the example of Section 3.2. Fig. 10 shows a sample
of the step-wise transformations that can be implemented to gen-
erate more elaborate STM solutions and their force diagrams while
maintaining the static equilibrium.

The step-wise subdivision of the form and force diagrams in
Fig. 10(1)-(4) illustrates the change from a point load in (a) to a dis-
tributed load in (e) for a simply-supported beam. The truss models
in Fig. 10(1) and (3) are carrying the loads directly to the supports;
the difference relies on the concrete’s load transfer behavior, where
in Fig. 10(1) an arching (funicular) and in Fig. 10(3) a fan-shaped
action occurs. ‘‘Whether a fan or an arch mechanism occurs in a
certain member depends, among other things, on the slenderness,
the reinforcement ratio, and the loading history. In an elastic solu-
tion, the stiffest mechanisms will be formed” [57, 2.1: 12]. Consid-
ering that the funicular behavior uses a shorter load path and
assuming that the model with the least load path has less deforma-
tion and therefore is stiffer, the STM in Fig. 10(1e) compare to
Fig. 10(3e) is likelier to happen in the elastic range.

The other exciting modification is to transfer the load indirectly
to the supports by adding stirrups, as in Fig. 10(5) and (6), where a
g. 9; (1d) and (3d) their schematic reinforcement designs; (2a)-(2c) and (4a)-(4c)
; (2d) and (4d) their schematic reinfo.rcement designs.
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combined funicular and fan-shaped behavior occurs. For example,
in Fig. 10(5e), a portion of the external load transfers with the fan-
shaped struts to the horizontal tie, then, passes through the stir-
rups to the arching struts on the top and eventually transfers along
the other portion of the external load through the arch to the
supports.

The next sections illustrate modification scenarios for the
results in Fig. 9. The new force and form are available with the help
of reciprocal relations, the equilibrium is satisfied, and the stress
fields are reconstructed. In the following examples, the boundary
conditions stay unchanged, and a schematic interpretation of the
reinforcement layout is depicted. The location of ties, the magni-
tude of the tension forces, and fabrication rules help arrange the
reinforcement for the given domain.
3.2.1. Diagonal reinforcement
Fig. 10(5) and (6) showed how adding the stirrups helps redis-

tribute the tension force in the horizontal reinforcement. Now,
using the outputs for the frame joint in Fig. 9(3) and dapped-end
beam in Fig. 9(4), Fig. 11(2) and (4) demonstrate how a diagonal
tie is added to the STM, where the forces, stress fields, and rein-
forcement arrangements are updated. Structural engineering prac-
tice uses diagonal reinforcements at specific locations such as
cross-sectional changes or around openings. The diagonal bar helps
the confinement of the region in avoiding cracks and improves the
Fig. 12. (1a)-(1c) and (3a)-(3c) Original force diagrams, STMs, and stress fields from F
modified force diagrams, STMs and stress fields with additional diagonal reinforcement
bending capacity of the concrete element [7, 62–67], [57, 2.1: 69–
72].

Note that, although we constrained the diagonals to carry com-
pression to get useful models in the optimization formulation,
there was also a possibility to assign tension values to specific loca-
tions. However, the results will not be as clean, and the inclination
of ties and struts is only restricted to 45-degree angles.

3.2.2. Subdivision of forces
Fig. 10 illustrated that the availability of the force and form dia-

grams allows the redistribution of tension and compression. Now,
considering the output STMs for the frame joint in Fig. 9(3) and
stepped beam Fig. 9(2), Fig. 12(2) and (4) show that the subdivision
of the diagrams results in the force re-distributions in the discon-
tinuity regions [7, 66–67]. The modified forces in Fig. 12(2a) and
(4a) are half of the original forces in Fig. 12(1a) and (3a), which
is also evident by looking at the stress fields in Fig. 12(2c) and
(4c). The transformations created longer load paths, which could
be assumed as a more plastic behavior compare to the original
solutions (based on the earlier discussion).

3.2.3. Indeterminate cases
If the STM is indeterminate, e.g., Fig. 11(4b) and Fig. 12(2b), then

manipulation of the force diagram,while the form stays unchanged,
can create different force distributions, see Fig. 13(1a)-(1c) and
(3a)-(3c). The reinforcement layout in Fig. 13(2d) and (4d) remains
ig. 9; (1d) and (3d) their schematic reinforcement designs; (2a)-(2c) and (4a)-(4c)
; (2d) and (4d) their schematic reinfo.rcement designs.



Fig. 13. (1a)-(1c) and (3a)-(3c) Variations of the force diagrams for the indeterminate STMs in (1d) and (3d); (2a)-(2c) and (4a)-(4c) their corresponding stress fields; (2d) and
(4d) their schematic reinforcement designs (the size of reinforcement in Ui and Ui;j vary according to the amount of tension in ei* and ej*).
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unchanged, if the size of the corresponding rebars, e.g.,Ui, could get
adjusted accordingly. The changes in the compression forces are
apparent in the stress fields of Fig. 13(2a)-(2c), while they have
not varied drastically in Fig. 13(4a)-(4c).

3.3. Evaluation

The STM solutions of a given problem can be evaluated or com-
pared using an FEA-based stress field analysis software, such as
IDEA StatiCa Detail [68]. As an example, the reinforcement patterns
for the frame joint in Fig. 11(1d) and (2d) and Fig. 12(2d) are used
as the rebar layouts in IDEA StatiCa Detail to carry out an
evaluation.

Fig. 14(3) and (4) show the results of the stress analysis (ulti-
mate limit state, ULS) and the crack width evaluation (serviceability
limit state, SLS), given the boundary conditions, concrete cross-
section, and reinforcement designs in Fig. 14(1) and (2). Each rebar
has four layers along the 500 mm width of the cross-section. The
least amount of reinforcement is used to satisfy the criteria for
stress limitations, anchorage length, and crack widths.

Adding the diagonal reinforcement in Fig. 14(b) has reduced the
crack widths utilization and the stresses in concrete and steel com-
pare to the results of Fig. 14(a). Also, as expected, the compressive
stresses in Fig. 14(3c) are distributed more evenly, i.e., have less
concentration in comparison to Fig. 14(3a) and (3b). As a result,
there is less utilization of concrete and reinforcement strength.
However, using the reinforcement layout in Fig. 14(c) requires
more steel and has larger crack widths compared to Fig. 14(b).
The other observation could be that using the reinforcement design
from the LAYOPT solution, i.e., Fig. 14(2a), with the minimized load
path (or volume), does not necessarily provide the best engineering
solution, and in this case, Fig. 14(2b) could be a more desirable
design with reasonable use of material compared to the other
two solutions.
4. Discussion and conclusions

This paper presented a methodology to bridge the gap between
LAYOPT and GS by utilizing their advantages. Thus, the reliance on
the single optimization solution as the only valid answer and the
pre-definition of an initial diagram for GS were avoided. The devel-
oped algorithm embedded the algebraic formulation of GS for
indeterminate trusses into the LAYOPT equations, then combined
it with the Minkowski sum operation to produce a valid truss
model, force diagram, and constant stress fields.



Fig. 14. (1) Boundary conditions and cross-sectional area (dimensions in mm) for the beam and column; (2) reinforcement designs; outputs of IDEA StatiCa Detail: (3) ULS,
stress flow (blue: tension, red: compression, orange: stress in the anchorage, numbers show the utilization percentage of concrete, steel, and anchorage strength); (4) SLS,
crack width check (numbers show the utilization percentage of the crack width).
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The availability of the form and force diagrams allowed the
modification of the initial diagrams and access to the updated
internal forces, while the equilibrium was assured. As a result, a
variety of STM solutions with constant stress fields and various
reinforcement arrangements are produced. The utilization of GS
provided a desirable level of control to systematically create prac-
tical STMs while helped in the understanding of their force distri-
bution patterns. Furthermore, the generated results could provide
better structural performances beyond the single optimization
solution, aiming to minimize material usage. The performance
evaluation of multiple reinforcement designs for a given problem
was carried out using a stress field analysis software [68].

Aside from creating several designs, this paper provided a novel
algorithm to automatically construct form and force diagrams in a
continuum under given boundary conditions, where the complex-
ities of the AGS method such as pre-defining the independent force
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densities for the indeterminate ground truss, and the planarity
requirement of the form diagram were avoided. Although the load
path minimization objective was similar to [38,47], instead of a
manually defined starting geometry for the truss, non-linear opti-
mization equations, and nodal locations as optimization variables,
the integrated algorithm used an automatically generated ground
truss, the equations were linear, and the nodal locations were
fixed. Although the fixed nodal locations in our case could cause
longer load paths, the resulting geometries are practical and
directly convertible to reinforcement designs. Similar to the solu-
tions of topology optimization and layout optimization with full
ground truss, e.g., Fig. 1, the tension paths in the solutions of
[47] in many cases are not directly usable for reinforcement design.
Another point is that the generated force diagrams in [47] are not
easily readable, which poses a challenge in case of their utilization
in a further step.

4.1. Limitations and future research

It is shown that the optimization results are affected by the
geometry of the domain, mesh definition, connectivity of the nodes
in the ground truss, and the optimization formulation. Therefore,
for domains with irregular geometries or non-rectangular meshes,
the user sometimes requires to investigate a variety of ground
truss definitions or optimization constraints in order to have a
valid initial model. Having cleaner initial results can facilitate the
modifications and generation of other designs.

The examples presented here were limited to modifications that
can produce other conventional STM solutions, however using GS
also allows alternative and creative forms [42,45,46], where the
validity of the STM and the reinforced concrete behavior is to be
tested. Furthermore, the provided methodology applies to other
materials such as reinforced masonry and timber connections,
where strut-and-tie models and stress fields have been employed
[69,70].

A significant amount of research on STM and stress fields has
been conducted only in two-dimensional domains, and the authors
are currently seeking to use the recent developments of three-
dimensional GS [41,54,71] to generate a variety of three-
dimensional truss models for reinforced concrete design.
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