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Augmented intuition

Encoding ideas, matter, and why it matters

Mathias Bernhard, Maria Smigielska, and Benjamin Dillenburger

Artificial intelligence (AI) promises to support the production of architecture along the entire
process chain. A common challenge of both computational design and Al is the question of
encoding. How can a design idea be formalized? How can design problems and ideas be mod-
eled so computers can process them? What is the minimum number of parameters needed for
maximum freedom in design? Can these parameters be dimensions of a feature vector? What
concepts of Al can address the challenges of generating and evaluating solutions? This chal-
lenge is present in various phases within a digital design to fabrication routine: starting with
the first design sketches and ending with the robotic fabrication. Each of the steps requires
different approaches to encoding. When successful, Al can become an active partner in the
creative part of the design and allow for a new kind of intuitive fabrication.

This chapter discusses the meaning of intuition, creativity, and intelligence in the context
of architecture and how information technology can potentially support designers and aug-
ment their intuition. It starts with looking at how technology has been employed to support
the design process throughout history, even before computers were invented. The general
introduction sheds light on different creative processes, asking what creativity is and how it
can be classified. It is followed by a description of two case studies conducted by the authors.
Although these projects are very diverse in type, application, and scale, they showcase the
potential and promising applications of Al in architecture once the design is digitally en-
coded. The chapter reflects on the current and categorical limitations of Al and concludes
with an optimistic outlook on various possible creative applications of Al in the domain of
architecture.

Computational design in architecture

As architects and designers, we are driven to converge knowledge at different stages during
the creative process from the design to its physical realization. Architecture fuses the imag-
inary with the rational, experimental with functional, art with science. It has always been
embracing the state-of-the-art knowledge and technologies of its time. Therefore, there is
no surprise in discussing machine learning (ML) applications in an architectural context. It
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seems to be the natural sequel as architecture got familiar with concepts of encoding of ar-
chitectural knowledge already before the rise of digital technologies.

Computation itself dates back long before the modern electronic computer was in-
vented: Leibniz introduced the first mechanical calculator in 1685. Ada Lovelace came
up with the first idea of a programming language for the Difference Machine of Charles
Babbage around 1840. Furthermore, the gesture of encoding architectural knowledge has
existed in an analog format in each historical epoch. Compendiums store architectural
data, examples, models, and protocols relevant for their time, in varied modes of repre-
sentation, including texts, images, or drawings. Treaties of Palladio in the Renaissance
proposed a “compositional machinery needed to design new buildings that are instances of
the style” (Stiny & Mitchell, 1978), while Durand suggested the modular assembly of basic
architectural elements that could be recombined in countless permutations with a system
of universal principles.

Already in the early days when computers filled entire rooms, architects were curious
about how this technology could actively support the design process, beyond being a mere
digital drafting board (Steadman, 1976). This inevitably brings up the question, how project
ideas can be quantified and made machine-readable. How can the design space be encoded
(see Figure 22.1), and what forms of AI could help explore it (Bernhard, 2019)? Recent
advancements in digital technologies continue to explore those methods but in a faster and
automated manner. Automation enables the creation of entire populations of configurations.
Instead of crafting a single idea, one can generate large amounts of solutions and select the
preferred option. As such, the design process has been shifted from a deterministic format
toward a more selective one.

The design space can be built in multiple ways, for instance, with a parametric modeling
technique that allows us to manipulate any geometry with a few variables. We can call the
collection of all parameters a feature vector, whose dimensions are indeed often directly
linked to metric dimensions of the physical object. The design space, the set of potential
solutions, is constrained by a predefined topology. With every additional parameter (read:
dimension) and its corresponding range, the possible combinations grow exponentially.

Many disciplines draw inspiration from nature when looking for problem-solving strat-
egies. Computer scientists borrowed ideas from evolution to find suitable candidates in
large populations. Genetic algorithms (GAs) help explore promising design directions

Figure 22.1 Part of the solution space of magnetic actuator combinations generating ferro-
fluid patterns in Proteus 2.0 project. Image: Maria Smigielska.
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among numerous permutations using nature-inspired mechanisms of evolution, namely
reproduction, mutation, and recombination. The jargon is borrowed from biology. The
prototype model is called a genotype, and its instances with individual gene configurations
are phenotypes. The difference lies in how the design space is traversed to find optimal
solutions.

Instead of individually setting the parameter values, they are generated and evaluated
through a fitness function widely explored in design and architecture (Frazer, 1995). GAs
make use of the stochastic patterns of the fitness landscape—not a simple function but not
entirely random either—to search for suitable solutions more efficiently.

ML in architecture

However, data-driven approaches advanced by ML algorithms seem to open new models
for the encoding of architectural knowledge that reach out beyond purely formal, ana-
lytic, or classification models and promote human creativity and intuition. Besides quanti-
fying human ideas, research in AT also investigates whether even ideas could be generated
by computers, by a form of artificial creativity. Given the increasing amount and ubiquity
of available data, designers embrace AI possibilities and merge it with all artistic forms
from visual to performing arts, including speech, vision, and language. Now, it is easier
than ever to become a music composer (Newton-Rex et al,, n.d.), generate “The Next
Rembrandt” portrait (Thompson et al., 2016), paint like van Gogh with style transfer
(Gatys et al., 2015), generate a personalized web design (Tocchini, 2014), write the longest
novel ever (Ross, 2018), or create an unprecedented strategic move in the game of Go
(Silver et al., 2016).

According to DeepMind cofounder and CEO Demis Hassabis (Hassabis, 2018), most of
the abovementioned generative acts would be categorized as interpolation based on the princi-
ple of averaging or generalizing training examples. While it might sound like an achievement
for a computer to obtain such a degree of generative capacity, from a designer’s perspec-
tive, it means filling the design space with large quantities of different variants of the same
idea, extracted from the given examples. Those conventional methods of supervised ML—
classification, regression, and clustering—could be perfect candidates to use any architectural
compendium as their training data. The last example of AlphaGo represents the next level

Figure 22.2 Concrete slab with optimized topology; left: view of the underside, right:
close-up of the tubular structures. Photos: Andrei Jipa, DBT.
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of the creative process described as extrapolation. It is characterized by extended boundaries
within which Al finds new solutions, even though within the same context still.

What architecture and other creative industries strive for is to reach beyond replicating
the existing ideas and create new original ones that allow rendering the impossible thought,
think the unthinkable by “transforming the whole conceptual spaces and changing pre-
existing assumptions,” how cognitive scientist Margaret A. Boden formulates it (Boden,
2004). While this type of creativity, called invention by Hassabis, or transformational creativity
by Boden, remains strictly a human domain, we firmly believe that the combination of
human and machine intelligence can lead to unprecedented creative enhancement bringing
alteration in overall architectural creation and production system.

How can we combine the two worlds, ML governed by statistics, combinatorics, and
probabilities on the one hand and architecture driven by creativity, innovation, and surprise
through the careful breaking of some rules on the other? How can architectural knowledge
and ideas be quantified, formalized—encoded—for Al to be able to compute solutions and
support the design process? And most importantly, how can this be achieved without losing
the degrees of freedom for creative exploration needed by architecture? (Figure 22.2).

Al applications in the early design and robotic fabrication

The following two case studies demonstrate the potential applications of ML in architec-
tural design. They are examples of how Al can assist the designer in different phases of the
process—virtually in the design and tangibly in the production phase. They operate at differ-
ent scales—from entire wall elements to filigree metal rods. The projects collect and generate
different types of training data—digitally synthesized through simulation and collected in
the real world from physical experiments and apply different algorithms to produce different
outputs. They show how AI can be integrated into the design process already now. Both
projects have very specific, relatively narrow, and well-defined tasks to be addressed by the
Al, thereby augmenting the designer’s creativity as smart assistants. Eventually, in the nearby
future, more and more narrow tasks may be widened and connected. But we believe that it
will always be a creative dialog and exchange of the designer interacting with various forms
of smart assistants (see Figure 22.9).

The pursuit of integrating Al applications in architecture should not be to provide a
one-button hands-off solution from sketch to fabrication. However, a fascinating and prom-
ising world opens up to architecture if various smart assistants augment and support each
other. What solutions would become possible if the Al-assisted creativity in the early design
phase was not limited by the constraints of conventional manufacturing methods? What cre-
ations could be realized if the Al-assisted fabrication and materialization would not have to
rely on human’s limited imagination only?

The two case studies have in common that they both encode the design-relevant aspects
of the samples to allow the computer to extract hidden patterns and complex mathematical
functions. They make the design space computable—arriving at solutions given a specific
input situation. In both cases, the extracted patterns are used in the decision-making process
but not for the automation of design or delegation of the creative process to mere statistics.
Instead, ML models are trained to assist the architect by doing what computers do better than
humans and provide guidance based on “knowledge” extracted from vast amounts of data.

The first case study is a research project entitled TopoGAN and was developed by
Dr. Mathias Bernhard, Reza Kakooee, Patrick Bedarf, and Prof. Benjamin Dillenburger at
Digital Building Technologies DBT, ETH Zurich in 2020. Further technical details on the
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project, the method, and results are described in the paper TopoGAN—Topology Optimization
with Generative Adversarial Networks in the proceedings of the 2021 Advances in Architectural
Geometry AAG, Paris (Bernhard et al., 2021).

The second case study is a research project carried out by Maria Smigielska with further
collaborations with ABB Cergy France, Pierre Cutellic (The Front Desk project for Art[n+1]
gallery in Paris, 2016), Mateusz Zwierzycki (The Means project for Tallinn Architecture Bi-
ennale, 2017), and through educative workshops held internationally (Digital Knowledge at
ENSA Paris Malaquais 2018, FHN'W HGK Institute Industrial Design, Basel 2018) with a
diversified robotic infrastructure at hand.

Case study 1: TopoGAN—topology optimization
with generative adversarial networks

The strive for spanning large distances with slender beams has always also been an
aesthetic one. The great master builders of gothic cathedrals demonstrated the ele-
gance of artful force redirection through a highly performant use of materials. Increas-
ing awareness of the devastating consequences of the construction industry’s waste
production calls for efficient deployment of natural resources. For structural design,
topology optimization (TO) is a way to run finite element analysis (FEA) in a loop,
converging the design to a target value. For example, this target can be the maximum
stiffness of an element with a specified fraction of material (Bendsee & Kikuchi, 1988;
Bendsoe & Sigmund, 2003). The intricately branching lattices resulting from TO have
typically been challenging to produce with conventional methods. Advances in digital
fabrication—specifically additive manufacturing at large scales—have brought the use
of TO as a design instrument for architectural components into the realms of possibil-
ity, as shown in Figure 22.2 (Aghaei Meibodi et al., 2017; Jipa et al., 2016).

However, setting up all the necessary boundary conditions for TO (such as loads, sup-
ports, voids, or fixed elements) and finally running multiple FEA solver epochs is very labo-
rious, time-consuming, and requires advanced expert knowledge and specialized software.
TO is, therefore, often performed once as an input for further refinement in the design pro-
cess. It assumes a static set of constraints, and changing boundary conditions require a com-
plete recalculation of the TO from scratch as if no solution had been computed before. The
project TopoGAN addresses this dilemma (Bernhard et al., 2021). TopoGAN investigates the
applicability of ML to the structural design of optimized topologies in an early design phase.

The trained model learns some kind of artificial intuition about the distribution of ma-
terial. The model’s suggestions are not numerically precise enough to replace an accurate
simulation, but fast enough for an interactive working mode in an early design phase, where
qualitative concepts are more important than quantitative precision. Because the ground
truth—the real solution the ML model is supposed to predict or generate—can be simulated
virtually, there is no need to collect training data in the wild and manually label it. Instead,
an arbitrary number of synthetic training samples can be generated.

While the method is scale-independent, TopoGAN is applied to a building element, a
three-by-three-meter wall. The walls are assumed to be loaded along the top edge and sup-
ported along the bottom edge. What varies among all the samples is the size, shape, position,
and rotation of the openings. A total of approximately three thousand sample inputs in three
different datasets are thus randomly generated (see Figure 22.3).
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Besides the input, the training data also requires the ground truth, the actual result of
the TO for a given wall layout. Each sample takes approximately one minute to run 50
epochs of TO on a 128 x 128-pixel input image. This number was identified to be suf-
ficient in most cases to have the changes below a certain threshold per additional epoch.
The TO on the inputs is batch processed using a Python implementation of the algorithm
(Aage & Johansen, 2013), and its result is concatenated with the input to one training pair
image. As the TO algorithm is deterministic, it is run once per randomly generated wall
scheme only.

As its name suggests, TopoGAN uses a generative adversarial network (Goodfellow
et al., 2014), where two neural networks compete and mutually improve each other’s
performance. The generator network tries and learns to produce output images that pass
as real, while the discriminator network tries and learns to distinguish between real and
fake. Instead of generating output from normally distributed random noise, the generator
learns a conditional function to translate from an input to an output image, as shown in
Figure 22.4 (Isola et al., 2016). The number of possible outputs for TopoGAN, grayscale
images of 128 x 128 pixels, is gigantic. Even for a tiny thumbnail of 5 X 6 pixels with only
black or white colors allowed, the number of possible images is 230=1073’741°824, over
1 billion solutions.

For what is known as the curse of dimensionality (Bellman, 1957), an exhaustive enu-
meration to find the best solution is impractical or impossible. Hence, encoding on a higher,
more abstract level has to be found. This is where the specific ML model architecture—
multilayer convolutional neural networks (CNNs), the building blocks of all computer vision
nowadays—unfold its real strength (Krizhevsky et al., 2012). In stacked levels, they extract
simple gradients first, edges or textures next, and then ever more complex features such as
patterns, parts, and finally objects further up the hierarchy to compress the essence of an im-
age to a reduced number of dimensions. In TopoGAN, the number of dimensions in the last
layer is 524°288. On the one hand, half a million values are still too much to control manu-
ally, like in a parametric design setup. On the other hand, these numbers are also meaningless

Figure 22.3 Three training samples from each of the data sets with rectangular, elliptic, and
rotated linear openings. Image: Mathias Bernhard, DBT.
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as they are abstractions. They do not represent the length of an edge or the diameter of a
hole. They are coordinates in a project-specific metric space, where redundancies are out of
the equation and only relative differences count. Similar topologies are close to each other,
dissimilar ones are further apart.

Obviously, to only simulate one solution does not justify the effort of generating 1’000
samples (1 minute each is more than 16 hours of calculation time), and then training a model
for another few hours. But once the model is trained, being able to generate an output in a
tenth of a second is a game-changer. It is not only about eventually winning time in the long
run, but the fast response makes ML-based TO a suitable candidate to be integrated into a
computer-aided design (CAD) environment.

Whenever the design changes, whenever windows are moved around or scaled, Topo-
GAN can display these changes’ structural implications in real-time by running interactively
alongside the design software. Instead of being a separate process disconnected from the
CAD environment, it can be integrated, immediate, and responsive. TopoGAN does not
pursue the unique goal of performance by speeding up one instance of TO. Instead, with
immediate feedback provided within the CAD environment, architectural and structural
design can be evolved in parallel, without one of them being set first and the other suffering
from the inherited consequences. Aesthetics and efficiency become the tandem they always
deserved to be.

Is TopoGAN creative? Maybe not, as it learns a mapping function for a clearly defined and
very constrained engineering problem. As long as the windows in the input do not span the
entire width of the wall—preventing the loads from being redirected to the supports—there
is one and only solution the TO algorithm will output. This cannot be said for the plethora
of architectural challenges where genuine creativity is needed—not for finding a solution in
proximity to other solutions for similar problems, but for inventing a suitable response to an
unseen question. Is TopoGAN artificially intelligent? Maybe, as its accomplishments are still
surprising and astonishing. It was able to learn and apply hard numerical constraints without
being explicitly programmed. For example, it learned to avoid the openings by distributing
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Figure 22.4 The 240 outputs of the TopoGAN generator network for previously unseen in-
puts (dotted surfaces). Image: Mathias Bernhard, DBT.

41



Mathias Bernhard et al.

material and hence deviating forces around them, but also a more complex constraint like
the desired volume fraction within a few percent of error from the target value. TopoGAN
may not invent original solutions itself, but it can stimulate the architects’ creativity. Playing
with the constraints and discovering the consequences in real-time, the resulting material
distribution becomes a design choice rather than an irrevocable law to obey.

This behavior awakens the interest and provides confidence that ML models such as
TopoGAN can help beyond the very constrained setting of the described case study. Given
the right amount and diversity of training data, it may learn to generalize, extract patterns,
and applicable rules for more complex or dynamically changing boundary conditions. The
concept can be transferred from structural design to other engineering problems, such as
fluid dynamics or thermal insulation.

Case study 2: Robotic rod bending technology

While there is more and more attention given to ML applications in architectural de-
sign, the topic of fabrication remains a bottleneck on the way to physically evaluate or
materialize new ideas. The industrial revolution has divided the field of manufacturing
into the standardized industrial production in large quantities that is generally slow
in embracing new technologies (Hossain & Nadeem, 2019) or artisanal hand-making
with unique solutions beyond financial reach for most of the architectural projects.
The first promise of individualized production appeared with the introduction of dig-
itization to manufacturing and early concepts of mass customization (Toffler, 1970).
However, it did not allow for much of a formal design differentiation as the system was
dedicated to one specific fabrication process. It did not help in the areas where human
knowledge cannot be replaced with a versatile machine, including dealing with com-
plex materials (Figure 22.5).

Figure 22.5 The Front Desk project at Art[n+1] gallery, Paris 2016. Photo: Leslie Ware.
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The Bendilicious research project (Smigielska, 2018) tries to bridge this gap by proposing
a simple, yet versatile, open, but automated fabrication solution with the example of metal-
work. Metals as architectural material have celebrated the progress of both technology and
civilization for centuries. It has traditionally occupied an ambivalent place of wonder and fear
due to its mysterious, both solid and liquid properties requiring high skills and knowledge
of specialized craftsmen. A cold-forming bending process with manual table benders has
not changed until the mid-90s, when the first conceptual schemes of computer integration
shifted this technology from a labor-intensive and hazardous process to a safer, faster, and
almost fully automated one (Dunston & Bernold, 2000).

However, the problem of the dependency on human expertise was only addressed in early
2000 when ML was integrated to help adaptively compensate for the variable springback
effect. Unequally distributed internal compression and tension forces make the material want
to return to its initial shape (Dunston & Bernold, 2000). This technology was incorporated
and black-boxed by heavy industry, leaving little space for custom or one-off projects.

Bendilicious also utilizes ML algorithms to encode and predict the material’s deformation
behavior but in a simplified and open format. We developed a simplified fabrication model
consisting of a single robotic arm with a custom end effector (see Figure 22.6) and a portable
rod-holding station. The robotic system serves a function of both a gripper and a bender (as
opposed to standard computer numerically controlled bending machines). Along with the
hardware development, the digital workflow was entirely embedded in Grasshopper—the
visual programming environment of the CAD software Rhinoceros—to provide continuity
of the information flow between different phases of project development: from concept de-
sign iteration, FEA, geometry rationalization, and generation of production data informed
by material behavior. The software containing design-to-fabrication processes is based on
both existing plugins and custom-made tools that do not require any intermediate conver-
sion to external software or machine code.

The data representing the nonlinear material behavior were collected from physical ex-
periments and then encoded in a regression model. The third polynomial function stems
from data points of desired angle and their respective resulting springback value, which was
harvested with the photo average-angle readout. While this method could be easily auto-
mated with available computer vision, adaptive threshold, and line recognition algorithms,
our simple photo readouts of only 120 data points guaranteed the prediction precise enough

Figure 22.6 A simplified robotic bending hardware setup. Photo: Maria Smigielska.
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for fabrication and assembly of two large space-frame projects. The Front Desk of the size
550 % 140 x 75 cm consisted of linearly assembled 800 unique elements, each between 12 and
100 cm long, with the number of bends ranging between 2 and 7 and with a total amount of
2’400 unique bending values (see Figure 22.5). The other project The Means was of the size
50 % 50 x 220 cm consisted of more complicated 3D elements with an increased length of
60—-120 cm, and twice the number of bends, ranging between 6 and 14 each (see Figure 22.7).

Is the ML methods directly creative? No, but the project brings a change on many other
levels. First, it aims to finally develop a simplified, versatile, and decentralized mode for the
future building industry. It promotes diversified over standardized solutions, as the robotic
arm, once trained, performs the same marginal cost of production for identical or unique
items. Such a model is applicable off-site as a flexible alternative to overconstrained, central-
ized industrial systems, and routine and hazardous manual work. An additional benefit lies in
its potential for on-site fabrication. The springback value is dependent on many of the chart
factors, such as changing room temperature, metal thickness, type, quality, etc. By coupling
robotic systems with visual and environment probing sensors, the trained model of, e.g., the
neural network could predict according to those changing conditions. Additionally, with an
online ML strategy, the data can be progressively gathered during production, grow bigger,
and more varied over time with each new project, which significantly improves the precision
of prediction, as well as the flexibility of the system that can be used in various site and daily
conditions.

Such a fabrication method occurs to be far from a hardcoded industrial system and re-
minds more of a craftsmen’s work, who develop their skill and build necessary tacit knowl-
edge over time through experience and practice. With those amplified cognitive abilities,
the robotic system gains a material intuition that allows for a more intricate and meaningful
communication with the physical world. Shifting the long process of material knowledge
acquisition to the machine is the key to successful automation for both encapsulation of
complex material behavior and sophisticated artisanal and autographic fabrication requiring
higher cognitive processes. Such an approach pushes the concept of digital fabrication beyond
mass customization or “nonstandard seriality” introduced by Mario Carpo (Carpo, 2011)

Figure 22.7 View of The Means project during Tallinn Architecture Biennale 2017. Photo:
Maria Smigielska.
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Figure 22.8 Gugelmann Galaxy: A browser application for exploring a large image collection
in 3D, with a detailed view of the selected item. Images can be arranged by four
different custom criteria. Image: Mathias Bernhard.

toward automated digital crafts for both existing and future materials such as complex, syn-
thetic, and graded composites.

While the material encoding is not strictly an architectural question, it does change how
the knowledge circulates in the design-to-production workflow. During a standard architec-
tural workflow, design intention is being crafted with the knowledge of engineering, struc-
ture, material, and fabrication in a unidirectional and sequential manner. Digital data helps to
bridge design with fabrication in a seamless way, but it is the material encoding that tightens
this relationship, understood not only as a continuous but more importantly, bidirectional,
fully informed, and negotiable workflow.

Johan Ostling, Professor for the history of knowledge, describes such a model of knowl-
edge exchange as circular (Ostling et al., 2018). It assumes the movement of information in
both directions. Such reciprocity not only allows to transmit the information from A to B but
also assumes the transformation of the information during those passages. This assumption
allows for a more vibrant and reciprocal relationship between architecture, construction, and
material engineering by offering a powerful holistic system over a compartmentalized and
discontinuous disciplinary approach.

It also actively changes the role of the architect who retrieves the control over the fabrica-
tion process, which was ubiquitous before the historical Albertian cutoff that separated con-
ception and construction through the introduction of notational architecture. Whether the
motivation was to maintain the intellectual and artisanal authorship as for Brunelleschi, who
built his dome in Florence, or mainly because there is no means to notate and translate the
design intention to fabrication language as with the example of Antoni Gaudi, who himself
built parts of the Sagrada Familia (Carpo, 2011). This gesture opens up a vast field of exper-
imentation for architectural design research, which might reshape the roles and capacities of
architects and other practitioners.

As Roberto Bottazzi puts it, “the means of expression available at any given time deter-
mine the bounds of architectural imagination” (Bottazzi, 2018). Through expression, we
understand what is possible to be constructed both virtually and physically. Therefore, we
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Figure 22.9 Human intelligence augmented by Al in different phases of an architectural proj-
ect. Image: Authors.

try to highlight the importance of Al explorations in both design and fabrication to amplify
and augment architectural creation with those two case studies.

Al in design opens up what can be imagined, while Al applied in the robotic fabrication
and material domains not only facilitates the materialization of innovative ideas but also
has a chance to drive them. We tend toward design innovation, understood broader than
geometrical diversity within standard solutions, but more importantly, as a creation of new,
particular architectural systems that incorporate new materials, requiring custom production
chains (Figure 22.9).

Conclusion

The encoding scheme is of utmost importance, as its number and type of dimensions directly
translate into the design space—the number and diversity of possible solutions. Any design
can be reduced and compressed to the chosen number of features. Conversely, the reduction
in encoding also means that any design can be recovered by decoding the latent vector into
a full solution. This assumes that all designs are instances of the same building plan, or to
express it in evolutionary design jargon, phenotypes with a common genotype.

However, correlation does not imply causation. The ability to encode two designs in a
custom metric space does not permit the reverse conclusion that these metrics were the driv-
ing parameters generating the design. A model where the control points of building outlines
are encoded in polar coordinates—distance from centroid and angle from X-axis—excludes
a courtyard house by design. Given a large enough corpus of raw material, ML can extract
common denominators and measure similarities among the individual samples. This allows
the training of a classification system to detect architectural styles in photographs (Shalunts
etal.,, 2011; Zhao et al., 2018). It works in hindsight, for buildings that already exist. But even
the most elaborate model trained on the most extensive collection of Baroque architecture
will only be able to generate more Baroque architecture. The results may well be impressive,
and maybe even fool historians, as richly orchestrated compositions arranged in the style of
Johann Sebastian Bach do with experts of classical music.

ML models have become stunningly good at discovering patterns to not only classify
but also synthesize new instances based on probability distributions—talented forgers able
to create credible shams. Are Al-assisted CAD tools a modern version of Sebastiano Serlio’s
Regole Generali (Serlio, 1537)—crutches enabling the mediocre architect to produce more
of the same? Is a masterpiece one that artfully breaks with conventions? Philosopher Sean
Dorrance Kelly calls artificial Bach compositions “mimicry,” excluding “by design” a new
Schonberg who fundamentally changed what music is, creating pieces different in kind and
not just variations on existing ones (Kelly, 2019). The outliers, the nonconformists, often
brought a culture forward by shifting the gravity center in the encoded space.
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This anthropomorphic understanding of technologies in which we perceive Al as the one
to directly mimic the human brain and machine that directly replaces human muscle might
trigger the competitive dichotomy of a man versus machine. However, technologies are in-
deed unlike us, even if they can automate and replicate almost anything, we create that can
be measured or quantitatively described. Al can process more information and faster than us,
machines construct larger or significantly smaller elements with much higher precision than
us, but they lack human intuition and radical creativity.

Al calculates solutions to quantifiable problems in no time, but it does not make sense of
the problem itself. Therefore, Al for architectural design should neither be about replacing
the designer by a competing automated building synthesizer nor about lights-out factories.
Instead, the computer can become a powerful assistant in a cocreative process, like in the idea
of Centaur—a mythological hybrid of two species that complete and empower traits of their
individuals in such a symbiotic scenario.

Al can act as a smart librarian, providing previous answers to similar questions drawn
in fractions of seconds from extensive collections, eventually proposing required adjust-
ments (Yoo et al., 2020). It can act as a curator, helping to sort and cluster collections along
custom dimensions defined by the user (Bernhard, 2016; Bernhard et al., 2015). These can
be dimensions not previously available in the data but extracted, encoded, and eventually
unveiling unexpected neighborhoods and providing new insights. The project Gugelmann
Galaxy demonstrates this use of ML in a browser application (see Figure 22.8). It allows
building new models for more meaningful interaction (Smigielska, 2020), where the com-
puter can even disappear entirely and learn the designer’s preferences by correlating brain ac-
tivity with changing patterns the designer is exposed to during the training phase, as shown
in Figure 22.10 (Smigielska & Cutellic, 2018). Elaborate ML models using multiple layers
of convolutions (CNNs) can learn very intricate qualitative patterns in high-dimensional
spaces, beyond quantitative parameters. What may appear as mere collections of meaningless
numbers becomes very informative and unveiling when being visualized (Olah et al., 2017).

Al has the potential to enhance architects’ creativity by speeding up tedious processes
and providing immediate responses by providing a trigger for a new idea to be developed or
by tightening the design-to-production process. It tries to bridge the gap between human
and machine intelligence by developing models that encode higher cognitive capacities, like
intuition, required in architecture and other creative industries. It also allows the architect

Figure 22.10  Ferrofluid patterns in Proteus 2.0 project. Photo: Maria Smigielska.
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for more intricate communication with the physical world by opening and diversifying pos-
sible modes of production. While former developments in digital technologies addressed
mainly geometrical complexity and design freedom, AT has the chance to affect architecture
at multiple scales and dimensions. Thus, it requires a massive leap of experimentation and
imagination, which might remain the biggest challenge for designers on the way to build
architectural scenarios through Al models and methods.

As theorist Stephan Triiby has stated, architecture is “perhaps the most complex cultural
technology that humanity has produced” (Triiby, 2017), and therefore its quality is difficult
to measure. It is not about maximizing a target value of a function such as stress or compli-
ance. Instead, it is arguable and uncertain if a function to measure quality even exists. If so,
its parameters are unknown, more complex, impossible to be evaluated from the perspective
of a single discipline, and far less intuitive to describe than most conventional features ex-
tracted for image classification. While it is impossible to encode all the architectural interests
at once, we can progressively harness the Al models’ powerful ability to find hidden and
often inexplicable connections in vast amounts of data, to guide our decision-making among
myriads of options.
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