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Augmented intuition 
Encoding ideas, matter, and why it matters 

Mathias Bernhard, Maria Smigielska, and Benjamin Dillenburger 

Artifcial intelligence (AI) promises to support the production of architecture along the entire 
process chain. A common challenge of both computational design and AI is the question of 
encoding. How can a design idea be formalized? How can design problems and ideas be mod-
eled so computers can process them? What is the minimum number of parameters needed for 
maximum freedom in design? Can these parameters be dimensions of a feature vector? What 
concepts of AI can address the challenges of generating and evaluating solutions? This chal-
lenge is present in various phases within a digital design to fabrication routine: starting with 
the frst design sketches and ending with the robotic fabrication. Each of the steps requires 
diferent approaches to encoding. When successful, AI can become an active partner in the 
creative part of the design and allow for a new kind of intuitive fabrication. 

This chapter discusses the meaning of intuition, creativity, and intelligence in the context 
of architecture and how information technology can potentially support designers and aug-
ment their intuition. It starts with looking at how technology has been employed to support 
the design process throughout history, even before computers were invented. The general 
introduction sheds light on diferent creative processes, asking what creativity is and how it 
can be classifed. It is followed by a description of two case studies conducted by the authors. 
Although these projects are very diverse in type, application, and scale, they showcase the 
potential and promising applications of AI in architecture once the design is digitally en-
coded. The chapter refects on the current and categorical limitations of AI and concludes 
with an optimistic outlook on various possible creative applications of AI in the domain of 
architecture. 

Computational design in architecture 

As architects and designers, we are driven to converge knowledge at diferent stages during 
the creative process from the design to its physical realization. Architecture fuses the imag-
inary with the rational, experimental with functional, art with science. It has always been 
embracing the state-of-the-art knowledge and technologies of its time. Therefore, there is 
no surprise in discussing machine learning (ML) applications in an architectural context. It 
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seems to be the natural sequel as architecture got familiar with concepts of encoding of ar-
chitectural knowledge already before the rise of digital technologies. 

Computation itself dates back long before the modern electronic computer was in-
vented: Leibniz introduced the frst mechanical calculator in 1685. Ada Lovelace came 
up with the frst idea of a programming language for the Diference Machine of Charles 
Babbage around 1840. Furthermore, the gesture of encoding architectural knowledge has 
existed in an analog format in each historical epoch. Compendiums store architectural 
data, examples, models, and protocols relevant for their time, in varied modes of repre-
sentation, including texts, images, or drawings. Treaties of Palladio in the Renaissance 
proposed a “compositional machinery needed to design new buildings that are instances of 
the style” (Stiny & Mitchell, 1978), while Durand suggested the modular assembly of basic 
architectural elements that could be recombined in countless permutations with a system 
of universal principles. 

Already in the early days when computers flled entire rooms, architects were curious 
about how this technology could actively support the design process, beyond being a mere 
digital drafting board (Steadman, 1976). This inevitably brings up the question, how project 
ideas can be quantifed and made machine-readable. How can the design space be encoded 
(see Figure 22.1), and what forms of AI could help explore it (Bernhard, 2019)? Recent 
advancements in digital technologies continue to explore those methods but in a faster and 
automated manner. Automation enables the creation of entire populations of confgurations. 
Instead of crafting a single idea, one can generate large amounts of solutions and select the 
preferred option. As such, the design process has been shifted from a deterministic format 
toward a more selective one. 

The design space can be built in multiple ways, for instance, with a parametric modeling 
technique that allows us to manipulate any geometry with a few variables. We can call the 
collection of all parameters a feature vector, whose dimensions are indeed often directly 
linked to metric dimensions of the physical object. The design space, the set of potential 
solutions, is constrained by a predefned topology. With every additional parameter (read: 
dimension) and its corresponding range, the possible combinations grow exponentially. 

Many disciplines draw inspiration from nature when looking for problem-solving strat-
egies. Computer scientists borrowed ideas from evolution to fnd suitable candidates in 
large populations. Genetic algorithms (GAs) help explore promising design directions 

Figure 22.1 Part of the solution space of magnetic actuator combinations generating ferro-
fuid patterns in Proteus 2.0 project. Image: Maria Smigielska. 
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among numerous permutations using nature-inspired mechanisms of evolution, namely 
reproduction, mutation, and recombination. The jargon is borrowed from biology. The 
prototype model is called a genotype, and its instances with individual gene confgurations 
are phenotypes. The diference lies in how the design space is traversed to fnd optimal 
solutions. 

Instead of individually setting the parameter values, they are generated and evaluated 
through a ftness function widely explored in design and architecture (Frazer, 1995). GAs 
make use of the stochastic patterns of the ftness landscape—not a simple function but not 
entirely random either—to search for suitable solutions more efciently. 

ML in architecture 

However, data-driven approaches advanced by ML algorithms seem to open new models 
for the encoding of architectural knowledge that reach out beyond purely formal, ana-
lytic, or classifcation models and promote human creativity and intuition. Besides quanti-
fying human ideas, research in AI also investigates whether even ideas could be generated 
by computers, by a form of artifcial creativity. Given the increasing amount and ubiquity 
of available data, designers embrace AI possibilities and merge it with all artistic forms 
from visual to performing arts, including speech, vision, and language. Now, it is easier 
than ever to become a music composer (Newton-Rex et al., n.d.), generate “The Next 
Rembrandt” portrait (Thompson et al., 2016), paint like van Gogh with style transfer 
(Gatys et al., 2015), generate a personalized web design (Tocchini, 2014), write the longest 
novel ever (Ross, 2018), or create an unprecedented strategic move in the game of Go 
(Silver et al., 2016). 

According to DeepMind cofounder and CEO Demis Hassabis (Hassabis, 2018), most of 
the abovementioned generative acts would be categorized as interpolation based on the princi-
ple of averaging or generalizing training examples. While it might sound like an achievement 
for a computer to obtain such a degree of generative capacity, from a designer’s perspec-
tive, it means flling the design space with large quantities of diferent variants of the same 
idea, extracted from the given examples. Those conventional methods of supervised ML— 
classifcation, regression, and clustering—could be perfect candidates to use any architectural 
compendium as their training data. The last example of AlphaGo represents the next level 

Figure 22.2 Concrete slab with optimized topology; left: view of the underside, right: 
close-up of the tubular structures. Photos: Andrei Jipa, DBT. 
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of the creative process described as extrapolation. It is characterized by extended boundaries 
within which AI fnds new solutions, even though within the same context still. 

What architecture and other creative industries strive for is to reach beyond replicating 
the existing ideas and create new original ones that allow rendering the impossible thought, 
think the unthinkable by “transforming the whole conceptual spaces and changing pre-
existing assumptions,” how cognitive scientist Margaret A. Boden formulates it (Boden, 
2004). While this type of creativity, called invention by Hassabis, or transformational creativity 
by Boden, remains strictly a human domain, we frmly believe that the combination of 
human and machine intelligence can lead to unprecedented creative enhancement bringing 
alteration in overall architectural creation and production system. 

How can we combine the two worlds, ML governed by statistics, combinatorics, and 
probabilities on the one hand and architecture driven by creativity, innovation, and surprise 
through the careful breaking of some rules on the other? How can architectural knowledge 
and ideas be quantifed, formalized—encoded—for AI to be able to compute solutions and 
support the design process? And most importantly, how can this be achieved without losing 
the degrees of freedom for creative exploration needed by architecture? (Figure 22.2). 

AI applications in the early design and robotic fabrication 

The following two case studies demonstrate the potential applications of ML in architec-
tural design. They are examples of how AI can assist the designer in diferent phases of the 
process—virtually in the design and tangibly in the production phase. They operate at difer-
ent scales—from entire wall elements to fligree metal rods. The projects collect and generate 
diferent types of training data—digitally synthesized through simulation and collected in 
the real world from physical experiments and apply diferent algorithms to produce diferent 
outputs. They show how AI can be integrated into the design process already now. Both 
projects have very specifc, relatively narrow, and well-defned tasks to be addressed by the 
AI, thereby augmenting the designer’s creativity as smart assistants. Eventually, in the nearby 
future, more and more narrow tasks may be widened and connected. But we believe that it 
will always be a creative dialog and exchange of the designer interacting with various forms 
of smart assistants (see Figure 22.9). 

The pursuit of integrating AI applications in architecture should not be to provide a 
one-button hands-of solution from sketch to fabrication. However, a fascinating and prom-
ising world opens up to architecture if various smart assistants augment and support each 
other. What solutions would become possible if the AI-assisted creativity in the early design 
phase was not limited by the constraints of conventional manufacturing methods? What cre-
ations could be realized if the AI-assisted fabrication and materialization would not have to 
rely on human’s limited imagination only? 

The two case studies have in common that they both encode the design-relevant aspects 
of the samples to allow the computer to extract hidden patterns and complex mathematical 
functions. They make the design space computable—arriving at solutions given a specifc 
input situation. In both cases, the extracted patterns are used in the decision-making process 
but not for the automation of design or delegation of the creative process to mere statistics. 
Instead, ML models are trained to assist the architect by doing what computers do better than 
humans and provide guidance based on “knowledge” extracted from vast amounts of data. 

The frst case study is a research project entitled TopoGAN and was developed by 
Dr. Mathias Bernhard, Reza Kakooee, Patrick Bedarf, and Prof. Benjamin Dillenburger at 
Digital Building Technologies DBT, ETH Zurich in 2020. Further technical details on the 
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project, the method, and results are described in the paper TopoGAN—Topology Optimization 
with Generative Adversarial Networks in the proceedings of the 2021 Advances in Architectural 
Geometry AAG, Paris (Bernhard et al., 2021). 

The second case study is a research project carried out by Maria Smigielska with further 
collaborations with ABB Cergy France, Pierre Cutellic (The Front Desk project for Art[n+1] 
gallery in Paris, 2016), Mateusz Zwierzycki (The Means project for Tallinn Architecture Bi-
ennale, 2017), and through educative workshops held internationally (Digital Knowledge at 
ENSA Paris Malaquais 2018, FHNW HGK Institute Industrial Design, Basel 2018) with a 
diversifed robotic infrastructure at hand. 

Case study 1: TopoGAN—topology optimization 
with generative adversarial networks 

The strive for spanning large distances with slender beams has always also been an 
aesthetic one. The great master builders of gothic cathedrals demonstrated the ele-
gance of artful force redirection through a highly performant use of materials. Increas-
ing awareness of the devastating consequences of the construction industry’s waste 
production calls for efcient deployment of natural resources. For structural design, 
topology optimization (TO) is a way to run fnite element analysis (FEA) in a loop, 
converging the design to a target value. For example, this target can be the maximum 
stifness of an element with a specifed fraction of material (Bendsøe & Kikuchi, 1988; 
Bendsøe & Sigmund, 2003). The intricately branching lattices resulting from TO have 
typically been challenging to produce with conventional methods. Advances in digital 
fabrication—specifcally additive manufacturing at large scales—have brought the use 
of TO as a design instrument for architectural components into the realms of possibil-
ity, as shown in Figure 22.2 (Aghaei Meibodi et al., 2017; Jipa et al., 2016). 

However, setting up all the necessary boundary conditions for TO (such as loads, sup-
ports, voids, or fxed elements) and fnally running multiple FEA solver epochs is very labo-
rious, time-consuming, and requires advanced expert knowledge and specialized software. 
TO is, therefore, often performed once as an input for further refnement in the design pro-
cess. It assumes a static set of constraints, and changing boundary conditions require a com-
plete recalculation of the TO from scratch as if no solution had been computed before. The 
project TopoGAN addresses this dilemma (Bernhard et al., 2021). TopoGAN investigates the 
applicability of ML to the structural design of optimized topologies in an early design phase. 

The trained model learns some kind of artifcial intuition about the distribution of ma-
terial. The model’s suggestions are not numerically precise enough to replace an accurate 
simulation, but fast enough for an interactive working mode in an early design phase, where 
qualitative concepts are more important than quantitative precision. Because the ground 
truth—the real solution the ML model is supposed to predict or generate—can be simulated 
virtually, there is no need to collect training data in the wild and manually label it. Instead, 
an arbitrary number of synthetic training samples can be generated. 

While the method is scale-independent, TopoGAN is applied to a building element, a 
three-by-three-meter wall. The walls are assumed to be loaded along the top edge and sup-
ported along the bottom edge. What varies among all the samples is the size, shape, position, 
and rotation of the openings. A total of approximately three thousand sample inputs in three 
diferent datasets are thus randomly generated (see Figure 22.3). 
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Besides the input, the training data also requires the ground truth, the actual result of 
the TO for a given wall layout. Each sample takes approximately one minute to run 50 
epochs of TO on a 128 × 128-pixel input image. This number was identifed to be suf-
fcient in most cases to have the changes below a certain threshold per additional epoch. 
The TO on the inputs is batch processed using a Python implementation of the algorithm 
(Aage & Johansen, 2013), and its result is concatenated with the input to one training pair 
image. As the TO algorithm is deterministic, it is run once per randomly generated wall 
scheme only. 

As its name suggests, TopoGAN uses a generative adversarial network (Goodfellow 
et al., 2014), where two neural networks compete and mutually improve each other’s 
performance. The generator network tries and learns to produce output images that pass 
as real, while the discriminator network tries and learns to distinguish between real and 
fake. Instead of generating output from normally distributed random noise, the generator 
learns a conditional function to translate from an input to an output image, as shown in 
Figure 22.4 (Isola et al., 2016). The number of possible outputs for TopoGAN, grayscale 
images of 128 × 128 pixels, is gigantic. Even for a tiny thumbnail of 5 × 6 pixels with only 
black or white colors allowed, the number of possible images is 230=1’073’741’824, over 
1 billion solutions. 

For what is known as the curse of dimensionality (Bellman, 1957), an exhaustive enu-
meration to fnd the best solution is impractical or impossible. Hence, encoding on a higher, 
more abstract level has to be found. This is where the specifc ML model architecture— 
multilayer convolutional neural networks (CNNs), the building blocks of all computer vision 
nowadays—unfold its real strength (Krizhevsky et al., 2012). In stacked levels, they extract 
simple gradients frst, edges or textures next, and then ever more complex features such as 
patterns, parts, and fnally objects further up the hierarchy to compress the essence of an im-
age to a reduced number of dimensions. In TopoGAN, the number of dimensions in the last 
layer is 524’288. On the one hand, half a million values are still too much to control manu-
ally, like in a parametric design setup. On the other hand, these numbers are also meaningless 

Figure 22.3 Three training samples from each of the data sets with rectangular, elliptic, and 
rotated linear openings. Image: Mathias Bernhard, DBT. 
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as they are abstractions. They do not represent the length of an edge or the diameter of a 
hole. They are coordinates in a project-specifc metric space, where redundancies are out of 
the equation and only relative diferences count. Similar topologies are close to each other, 
dissimilar ones are further apart. 

Obviously, to only simulate one solution does not justify the efort of generating 1’000 
samples (1 minute each is more than 16 hours of calculation time), and then training a model 
for another few hours. But once the model is trained, being able to generate an output in a 
tenth of a second is a game-changer. It is not only about eventually winning time in the long 
run, but the fast response makes ML-based TO a suitable candidate to be integrated into a 
computer-aided design (CAD) environment. 

Whenever the design changes, whenever windows are moved around or scaled, Topo-
GAN can display these changes’ structural implications in real-time by running interactively 
alongside the design software. Instead of being a separate process disconnected from the 
CAD environment, it can be integrated, immediate, and responsive. TopoGAN does not 
pursue the unique goal of performance by speeding up one instance of TO. Instead, with 
immediate feedback provided within the CAD environment, architectural and structural 
design can be evolved in parallel, without one of them being set frst and the other sufering 
from the inherited consequences. Aesthetics and efciency become the tandem they always 
deserved to be. 

Is TopoGAN creative? Maybe not, as it learns a mapping function for a clearly defned and 
very constrained engineering problem. As long as the windows in the input do not span the 
entire width of the wall—preventing the loads from being redirected to the supports—there 
is one and only solution the TO algorithm will output. This cannot be said for the plethora 
of architectural challenges where genuine creativity is needed—not for fnding a solution in 
proximity to other solutions for similar problems, but for inventing a suitable response to an 
unseen question. Is TopoGAN artifcially intelligent? Maybe, as its accomplishments are still 
surprising and astonishing. It was able to learn and apply hard numerical constraints without 
being explicitly programmed. For example, it learned to avoid the openings by distributing 

Figure 22.4 The 240 outputs of the TopoGAN generator network for previously unseen in-
puts (dotted surfaces). Image: Mathias Bernhard, DBT. 
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material and hence deviating forces around them, but also a more complex constraint like 
the desired volume fraction within a few percent of error from the target value. TopoGAN 
may not invent original solutions itself, but it can stimulate the architects’ creativity. Playing 
with the constraints and discovering the consequences in real-time, the resulting material 
distribution becomes a design choice rather than an irrevocable law to obey. 

This behavior awakens the interest and provides confdence that ML models such as 
TopoGAN can help beyond the very constrained setting of the described case study. Given 
the right amount and diversity of training data, it may learn to generalize, extract patterns, 
and applicable rules for more complex or dynamically changing boundary conditions. The 
concept can be transferred from structural design to other engineering problems, such as 
fuid dynamics or thermal insulation. 

Case study 2: Robotic rod bending technology 

While there is more and more attention given to ML applications in architectural de-
sign, the topic of fabrication remains a bottleneck on the way to physically evaluate or 
materialize new ideas. The industrial revolution has divided the feld of manufacturing 
into the standardized industrial production in large quantities that is generally slow 
in embracing new technologies (Hossain & Nadeem, 2019) or artisanal hand-making 
with unique solutions beyond fnancial reach for most of the architectural projects. 
The frst promise of individualized production appeared with the introduction of dig-
itization to manufacturing and early concepts of mass customization (Tofer, 1970). 
However, it did not allow for much of a formal design diferentiation as the system was 
dedicated to one specifc fabrication process. It did not help in the areas where human 
knowledge cannot be replaced with a versatile machine, including dealing with com-
plex materials (Figure 22.5). 

Figure 22.5 The Front Desk project at Art[n+1] gallery, Paris 2016. Photo: Leslie Ware. 



 

 

Augmented intuition 

The Bendilicious research project (Smigielska, 2018) tries to bridge this gap by proposing 
a simple, yet versatile, open, but automated fabrication solution with the example of metal-
work. Metals as architectural material have celebrated the progress of both technology and 
civilization for centuries. It has traditionally occupied an ambivalent place of wonder and fear 
due to its mysterious, both solid and liquid properties requiring high skills and knowledge 
of specialized craftsmen. A cold-forming bending process with manual table benders has 
not changed until the mid-90s, when the frst conceptual schemes of computer integration 
shifted this technology from a labor-intensive and hazardous process to a safer, faster, and 
almost fully automated one (Dunston & Bernold, 2000). 

However, the problem of the dependency on human expertise was only addressed in early 
2000 when ML was integrated to help adaptively compensate for the variable springback 
efect. Unequally distributed internal compression and tension forces make the material want 
to return to its initial shape (Dunston & Bernold, 2000). This technology was incorporated 
and black-boxed by heavy industry, leaving little space for custom or one-of projects. 

Bendilicious also utilizes ML algorithms to encode and predict the material’s deformation 
behavior but in a simplifed and open format. We developed a simplifed fabrication model 
consisting of a single robotic arm with a custom end efector (see Figure 22.6) and a portable 
rod–holding station. The robotic system serves a function of both a gripper and a bender (as 
opposed to standard computer numerically controlled bending machines). Along with the 
hardware development, the digital workfow was entirely embedded in Grasshopper—the 
visual programming environment of the CAD software Rhinoceros—to provide continuity 
of the information fow between diferent phases of project development: from concept de-
sign iteration, FEA, geometry rationalization, and generation of production data informed 
by material behavior. The software containing design-to-fabrication processes is based on 
both existing plugins and custom-made tools that do not require any intermediate conver-
sion to external software or machine code. 

The data representing the nonlinear material behavior were collected from physical ex-
periments and then encoded in a regression model. The third polynomial function stems 
from data points of desired angle and their respective resulting springback value, which was 
harvested with the photo average-angle readout. While this method could be easily auto-
mated with available computer vision, adaptive threshold, and line recognition algorithms, 
our simple photo readouts of only 120 data points guaranteed the prediction precise enough 

Figure 22.6 A simplifed robotic bending hardware setup. Photo: Maria Smigielska. 
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for fabrication and assembly of two large space-frame projects. The Front Desk of the size 
550 × 140 × 75 cm consisted of linearly assembled 800 unique elements, each between 12 and 
100 cm long, with the number of bends ranging between 2 and 7 and with a total amount of 
2’400 unique bending values (see Figure 22.5). The other project The Means was of the size 
50 × 50 × 220 cm consisted of more complicated 3D elements with an increased length of 
60–120 cm, and twice the number of bends, ranging between 6 and 14 each (see Figure 22.7). 

Is the ML methods directly creative? No, but the project brings a change on many other 
levels. First, it aims to fnally develop a simplifed, versatile, and decentralized mode for the 
future building industry. It promotes diversifed over standardized solutions, as the robotic 
arm, once trained, performs the same marginal cost of production for identical or unique 
items. Such a model is applicable of-site as a fexible alternative to overconstrained, central-
ized industrial systems, and routine and hazardous manual work. An additional beneft lies in 
its potential for on-site fabrication. The springback value is dependent on many of the chart 
factors, such as changing room temperature, metal thickness, type, quality, etc. By coupling 
robotic systems with visual and environment probing sensors, the trained model of, e.g., the 
neural network could predict according to those changing conditions. Additionally, with an 
online ML strategy, the data can be progressively gathered during production, grow bigger, 
and more varied over time with each new project, which signifcantly improves the precision 
of prediction, as well as the fexibility of the system that can be used in various site and daily 
conditions. 

Such a fabrication method occurs to be far from a hardcoded industrial system and re-
minds more of a craftsmen’s work, who develop their skill and build necessary tacit knowl-
edge over time through experience and practice. With those amplifed cognitive abilities, 
the robotic system gains a material intuition that allows for a more intricate and meaningful 
communication with the physical world. Shifting the long process of material knowledge 
acquisition to the machine is the key to successful automation for both encapsulation of 
complex material behavior and sophisticated artisanal and autographic fabrication requiring 
higher cognitive processes. Such an approach pushes the concept of digital fabrication beyond 
mass customization or “nonstandard seriality” introduced by Mario Carpo (Carpo, 2011) 

Figure 22.7 View of The Means project during Tallinn Architecture Biennale 2017. Photo: 
Maria Smigielska. 
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Figure 22.8 Gugelmann Galaxy: A browser application for exploring a large image collection 
in 3D, with a detailed view of the selected item. Images can be arranged by four 
different custom criteria. Image: Mathias Bernhard. 

toward automated digital crafts for both existing and future materials such as complex, syn-
thetic, and graded composites. 

While the material encoding is not strictly an architectural question, it does change how 
the knowledge circulates in the design-to-production workfow. During a standard architec-
tural workfow, design intention is being crafted with the knowledge of engineering, struc-
ture, material, and fabrication in a unidirectional and sequential manner. Digital data helps to 
bridge design with fabrication in a seamless way, but it is the material encoding that tightens 
this relationship, understood not only as a continuous but more importantly, bidirectional, 
fully informed, and negotiable workfow. 

Johan Östling, Professor for the history of knowledge, describes such a model of knowl-
edge exchange as circular (Östling et al., 2018). It assumes the movement of information in 
both directions. Such reciprocity not only allows to transmit the information from A to B but 
also assumes the transformation of the information during those passages. This assumption 
allows for a more vibrant and reciprocal relationship between architecture, construction, and 
material engineering by ofering a powerful holistic system over a compartmentalized and 
discontinuous disciplinary approach. 

It also actively changes the role of the architect who retrieves the control over the fabrica-
tion process, which was ubiquitous before the historical Albertian cutof that separated con-
ception and construction through the introduction of notational architecture. Whether the 
motivation was to maintain the intellectual and artisanal authorship as for Brunelleschi, who 
built his dome in Florence, or mainly because there is no means to notate and translate the 
design intention to fabrication language as with the example of Antoni Gaudí, who himself 
built parts of the Sagrada Familia (Carpo, 2011). This gesture opens up a vast feld of exper-
imentation for architectural design research, which might reshape the roles and capacities of 
architects and other practitioners. 

As Roberto Bottazzi puts it, “the means of expression available at any given time deter-
mine the bounds of architectural imagination” (Bottazzi, 2018). Through expression, we 
understand what is possible to be constructed both virtually and physically. Therefore, we 
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  Figure 22.9 Human intelligence augmented by AI in different phases of an architectural proj-
ect. Image: Authors. 

try to highlight the importance of AI explorations in both design and fabrication to amplify 
and augment architectural creation with those two case studies. 

AI in design opens up what can be imagined, while AI applied in the robotic fabrication 
and material domains not only facilitates the materialization of innovative ideas but also 
has a chance to drive them. We tend toward design innovation, understood broader than 
geometrical diversity within standard solutions, but more importantly, as a creation of new, 
particular architectural systems that incorporate new materials, requiring custom production 
chains (Figure 22.9). 

Conclusion 

The encoding scheme is of utmost importance, as its number and type of dimensions directly 
translate into the design space—the number and diversity of possible solutions. Any design 
can be reduced and compressed to the chosen number of features. Conversely, the reduction 
in encoding also means that any design can be recovered by decoding the latent vector into 
a full solution. This assumes that all designs are instances of the same building plan, or to 
express it in evolutionary design jargon, phenotypes with a common genotype. 

However, correlation does not imply causation. The ability to encode two designs in a 
custom metric space does not permit the reverse conclusion that these metrics were the driv-
ing parameters generating the design. A model where the control points of building outlines 
are encoded in polar coordinates—distance from centroid and angle from X-axis—excludes 
a courtyard house by design. Given a large enough corpus of raw material, ML can extract 
common denominators and measure similarities among the individual samples. This allows 
the training of a classifcation system to detect architectural styles in photographs (Shalunts 
et al., 2011; Zhao et al., 2018). It works in hindsight, for buildings that already exist. But even 
the most elaborate model trained on the most extensive collection of Baroque architecture 
will only be able to generate more Baroque architecture. The results may well be impressive, 
and maybe even fool historians, as richly orchestrated compositions arranged in the style of 
Johann Sebastian Bach do with experts of classical music. 

ML models have become stunningly good at discovering patterns to not only classify 
but also synthesize new instances based on probability distributions—talented forgers able 
to create credible shams. Are AI-assisted CAD tools a modern version of Sebastiano Serlio’s 
Regole Generali (Serlio, 1537)—crutches enabling the mediocre architect to produce more 
of the same? Is a masterpiece one that artfully breaks with conventions? Philosopher Sean 
Dorrance Kelly calls artifcial Bach compositions “mimicry,” excluding “by design” a new 
Schönberg who fundamentally changed what music is, creating pieces diferent in kind and 
not just variations on existing ones (Kelly, 2019). The outliers, the nonconformists, often 
brought a culture forward by shifting the gravity center in the encoded space. 
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This anthropomorphic understanding of technologies in which we perceive AI as the one 
to directly mimic the human brain and machine that directly replaces human muscle might 
trigger the competitive dichotomy of a man versus machine. However, technologies are in-
deed unlike us, even if they can automate and replicate almost anything, we create that can 
be measured or quantitatively described. AI can process more information and faster than us, 
machines construct larger or signifcantly smaller elements with much higher precision than 
us, but they lack human intuition and radical creativity. 

AI calculates solutions to quantifable problems in no time, but it does not make sense of 
the problem itself. Therefore, AI for architectural design should neither be about replacing 
the designer by a competing automated building synthesizer nor about lights-out factories. 
Instead, the computer can become a powerful assistant in a cocreative process, like in the idea 
of Centaur—a mythological hybrid of two species that complete and empower traits of their 
individuals in such a symbiotic scenario. 

AI can act as a smart librarian, providing previous answers to similar questions drawn 
in fractions of seconds from extensive collections, eventually proposing required adjust-
ments (Yoo et al., 2020). It can act as a curator, helping to sort and cluster collections along 
custom dimensions defned by the user (Bernhard, 2016; Bernhard et al., 2015). These can 
be dimensions not previously available in the data but extracted, encoded, and eventually 
unveiling unexpected neighborhoods and providing new insights. The project Gugelmann 
Galaxy demonstrates this use of ML in a browser application (see Figure 22.8). It allows 
building new models for more meaningful interaction (Smigielska, 2020), where the com-
puter can even disappear entirely and learn the designer’s preferences by correlating brain ac-
tivity with changing patterns the designer is exposed to during the training phase, as shown 
in Figure 22.10 (Smigielska & Cutellic, 2018). Elaborate ML models using multiple layers 
of convolutions (CNNs) can learn very intricate qualitative patterns in high-dimensional 
spaces, beyond quantitative parameters. What may appear as mere collections of meaningless 
numbers becomes very informative and unveiling when being visualized (Olah et al., 2017). 

AI has the potential to enhance architects’ creativity by speeding up tedious processes 
and providing immediate responses by providing a trigger for a new idea to be developed or 
by tightening the design-to-production process. It tries to bridge the gap between human 
and machine intelligence by developing models that encode higher cognitive capacities, like 
intuition, required in architecture and other creative industries. It also allows the architect 

Figure 22.10 Ferrofuid patterns in Proteus 2.0 project. Photo: Maria Smigielska. 
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for more intricate communication with the physical world by opening and diversifying pos-
sible modes of production. While former developments in digital technologies addressed 
mainly geometrical complexity and design freedom, AI has the chance to afect architecture 
at multiple scales and dimensions. Thus, it requires a massive leap of experimentation and 
imagination, which might remain the biggest challenge for designers on the way to build 
architectural scenarios through AI models and methods. 

As theorist Stephan Trüby has stated, architecture is “perhaps the most complex cultural 
technology that humanity has produced” (Trüby, 2017), and therefore its quality is difcult 
to measure. It is not about maximizing a target value of a function such as stress or compli-
ance. Instead, it is arguable and uncertain if a function to measure quality even exists. If so, 
its parameters are unknown, more complex, impossible to be evaluated from the perspective 
of a single discipline, and far less intuitive to describe than most conventional features ex-
tracted for image classifcation. While it is impossible to encode all the architectural interests 
at once, we can progressively harness the AI models’ powerful ability to fnd hidden and 
often inexplicable connections in vast amounts of data, to guide our decision-making among 
myriads of options. 

References 

Aage, N., & Johansen, V. E. (2013). Topology Optimization Codes Written in Python. http://www. 
topopt.mek.dtu.dk/Apps-and-software/Topology-optimization-codes-written-in-Python 

Aghaei Meibodi, M., Bernhard, M., Jipa, A., & Dillenburger, B. (2017). The Smart Takes from the 
Strong: 3D Printing Stay-in-Place Formwork for Concrete Slab Construction. In A. Menges, B. 
Sheil, R. Glynn, & M. Skavara (Eds.), Fabricate (Vol. 3, pp. 210–217). UCL Press. 

Bellman, R. (1957). Dynamic Programming. Princeton University Press. 
Bendsøe, M. P., & Kikuchi, N. (1988). Generating Optimal Topologies in Structural Design Using 

a Homogenization Method. Computer Methods in Applied Mechanics and Engineering, 71, 197–224. 
Bendsøe, M. P., & Sigmund, O. (2003). Topology Optimization: Theory, Methods, and Applications. In 

Engineering (2nd ed.). Springer Berlin Heidelberg. https://doi.org/10.1063/1.3278595 
Bernhard, M. (2016). Gugelmann Galaxy: An Unexpected Journey through a collection of Schweizer 

Kleinmeister. International Journal for Digital Art History, Visualizing Big Image Data, Vol. 2 (2016), 
95–113. https://doi.org/10.11588/dah.2016.2.23250 

Bernhard, M. (2019). Domain Transforms in Architecture—Encoding and Decoding of Cultural Ar-
tefacts [Doctoral thesis, ETH Zurich]. https://doi.org/10.3929/ethz-b-000381227 

Bernhard, M., Kakooee, R., Bedarf, P., & Dillenburger, B. (2021). TopoGAN - Topology Opti-
mization with Generative Adversarial Networks. AAG - Advances in Architectural Geometry, 
unpublished. 

Bernhard, M., Marinčić, N., & Orozco, J. (2015). ANY-FOLD: On Curation, Literacy & Space. Trans, 
curated Vol.27 (September 2015), 84–87. 

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms (2nd ed). Routledge. 
Bottazzi, R. (2018). Digital Architecture beyond Computers: Fragments of a Cultural History of Computational 

Design. Bloomsbury Visual Arts. 
Carpo, M. (2011). The Alphabet and the Algorithm. MIT Press. 
Dunston, P., & Bernold, L. (2000). Adaptive Control for Safe and Quality Rebar Fabrication. Journal 

of Construction Engineering and Management, Vol. 126, Issue 2 (March 2000) 122–129. https://doi. 
org/10.1061/(ASCE)0733-9364(2000)126:2(122) 

Frazer, J. (1995). An Evolutionary Architecture (P. Johnston, D. Crompton, J. McIvor, & M. Sparrow, 
Eds.; Themes VII). Architectural Association AA Publications. https://issuu.com/aaschool/docs/ 
an-evolutionary-architecture-webocr 

Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A Neural Algorithm of Artistic Style. ArXiv:1508.06576 
[Cs, q-Bio]. http://arxiv.org/abs/1508.06576 

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & 
Bengio, Y. (2014). Generative Adversarial Networks. http://arxiv.org/abs/1406.2661 

Hassabis, D. (2018). Creativity and AI. www.youtube.com/watch?v=d-bvsJWmqlc 

http://www.topopt.mek.dtu.dk
http://www.topopt.mek.dtu.dk
https://issuu.com
https://issuu.com
http://arxiv.org
http://arxiv.org
http://www.youtube.com
https://doi.org/10.1063/1.3278595
https://doi.org/10.11588/dah.2016.2.23250
https://doi.org/10.3929/ethz-b-000381227
https://doi.org/10.1061/(ASCE)0733-9364(2000)126:2(122)
https://doi.org/10.1061/(ASCE)0733-9364(2000)126:2(122)


 

  

 

 

Augmented intuition 

Hossain, M. A., & Nadeem, A. (2019). Towards digitizing the construction industry: State of the art 
of construction 4.0. ISEC 2019 - 10th International Structural Engineering and Construction Conference. 
https://doi.org/10.14455/isec.res.2019.184 

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2016). Image-to-Image Translation with Conditional Adver-
sarial Networks. http://arxiv.org/abs/1611.07004 

Jipa, A., Bernhard, M., Dillenburger, B., & Aghaei-Meibodi, M. (2016). 3D-Printed Stay-in-Place 
Formwork for Topologically Optimized Concrete Slabs. In Proceedings of the 2016 TxA Emerging 
Design + Technology Conference Texas Society of Architects (pp. 96–107). https://doi.org/10.3929/ 
ETHZ-B-000237082 

Kelly, S. D. (2019). A Philosopher Argues That An AI Can’t Be an Artist. In MIT Technology Review. https:// 
www.technologyreview.com/s/612913/a-philosopher-argues-that-an-ai-can-never-be-an-artist/ 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classifcation with Deep Convo-
lutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), 
Advances in Neural Information Processing Systems (Vol. 25, pp. 1097–1105). http://papers.nips.cc/pa-
per/4824-imagenet-classifcation-with-deep-convolutional-neural-networks.pdf 

Newton-Rex, E., Trevelyan, D., Chanquion, P., Kosta, K., Medeot, G., & Selvi, M. (n.d.). Jukedeck. 
TikTok. www.jukedeck.com 

Olah, C., Mordvintsev, A., & Schubert, L. (2017). Feature Visualization. Distill, 2(11), 10.23915/dis-
till.00007. https://doi.org/10.23915/distill.00007 

Östling, J., Sandmo, E., Larsson Heidenblad, D., Nilsson Hammar, A., & Hernæs Nordberg, K. (Eds.) 
(2018). The History of Knowledge and the Circulation of Knowledge: An Introduction. In Circula-
tion of Knowledge: Explorations in the History of Knowledge (pp. 9–33), Nordic Academic Press. https:// 
lup.lub.lu.se/search/ws/fles/36167357/Circulation_of_Knowledge.pdf 

Ross, G. (2018). Automatic on the Road. https://www.youtube.com/watch?v=TqsW0PMd8R0 
Serlio, S. (1537). Regole generali di architettura sopra le cinque maniere de gli edifci. Francesco Marcolini Da 

Forli. 
Shalunts, G., Haxhimusa, Y., & Sablatnig, R. (2011). Architectural Style Classifcation of Building 

Facade Windows. In G. Bebis, R. Boyle, B. Parvin, D. Koracin, S. Wang, K. Kyungnam, B. Benes, 
K. Moreland, C. Borst, S. DiVerdi, C. Yi-Jen, & J. Ming (Eds.), Advances in Visual Computing (Vol. 
6939, pp. 280–289). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-24031-7_28 

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Driessche, G. van den, Schrittwieser, J., 
Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbren-
ner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). 
Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature, 529, 484–503. 

Smigielska, M. (2018). Application of Machine Learning Within the Integrative Design and Fabrica-
tion of Robotic Rod Bending Processes. In De Rycke K. et al. (Eds.), Humanizing Digital Reality, 
pp. 523–536. Singapore: Springer. https://doi.org/10.1007/978-981-10-6611-5_44 

Smigielska, M. (2020). Proteus. Architecture and Naturing Afairs: Media and Architectonic Concepts. An 
M., Hovestadt, L., & Bühlmann, V. (Eds.), pp. 90–95, Berlin, Basel: Birkhäuser. https://doi. 
org/10.1515/9783035622164 

Smigielska, M., & Cutellic, P. (2018). Proteus Project [Installation]. https://mariasni.com/project/proteus/ 
Steadman, P. (1976). Graph-Theoretic Representation of Architectural Arrangement. In L. March 

(Ed.), The Architecture of Form (pp. 94–115). Cambridge University Press. 
Stiny, G., & Mitchell, W. J. (1978). The Palladian Grammar. Environment and Planning B: Planning and 

Design, 5, 5–18. https://doi.org/10.1068/b050005 
Thompson, W., Flores, E., Franken, M., & Haanstra, B. (2016). The Next Rembrandt. www.nextrem-

brandt.com 
Tocchini, D. (2014). The Grid. https://thegrid.io/ 
Tofer, A. (1970). Future Shock. The Third Wave. Random House. 
Trüby, S. (2017). Positioning Architecture. E-Flux Architecture. https://www.e-fux.com/architecture/ 

history-theory/159235/positioning-architecture-theory/ 
Yoo, A., Shammas, D., Akizuki, Y., Bernhard, M., & Dillenburger, B. (2020). OpenPlans [Innov3dum]. 

Digital Building Technologies, ETH Zurich. 
Zhao, P., Miao, Q., Song, J., Qi, Y., Liu, R., & Ge, D. (2018). Architectural Style Classifcation based 

on Feature Extraction Module. IEEE Access, 6, 52598–52606. 

419 

http://arxiv.org
https://www.technologyreview.com
https://www.technologyreview.com
http://papers.nips.cc
http://papers.nips.cc
http://www.jukedeck.com
https://lup.lub.lu.se
https://lup.lub.lu.se
https://www.youtube.com
https://mariasni.com
http://www.nextrem-brandt.com
http://www.nextrem-brandt.com
https://thegrid.io
https://www.e-flux.com
https://www.e-flux.com
https://doi.org/10.14455/isec.res.2019.184
https://doi.org/10.3929/ETHZ-B-000237082
https://doi.org/10.3929/ETHZ-B-000237082
https://doi.org/10.23915/distill.00007
https://doi.org/10.1007/978-3-642-24031-7_28
https://doi.org/10.1007/978-981-10-6611-5_44
https://doi.org/10.1515/9783035622164
https://doi.org/10.1515/9783035622164
https://doi.org/10.1068/b050005

