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ABSTRACT 

Multi-layer spatial structures usually take considerable external loads with a small material usage at all scales. 
Polyhedral graphic statics (PGS) provides a method to design multi-layer funicular polyhedral structures, and the 
structural forms are usually materialized as space frames. Our previous research shows that the intrinsic planarity 
of the polyhedral geometries can be harnessed for efficient fabrication and construction processes using flat-sheet 
materials. Sheet-based structures are advantageous over conventional space frame systems because sheets can 
provide more load paths and constrain the kinematic degrees of freedom of the nodes. Therefore, they are more 
capable of taking a wider variety of load cases compared to space frames. Moreover, sheet materials can be 
fabricated into complex shapes using CNC milling, laser cutting, water jet cutting, and CNC bending techniques. 
However, not all sheets are necessary as long as the load paths are preserved and the system does not have 
kinematic degrees of freedom. To find an efficient set of faces that satisfies the requirements, this paper first 
incorporates and adapts the matrix analysis method to calculate the kinematic degrees of freedom for sheet-based 
structures. Then, an iterative algorithm is devised to help find a reduced set of faces with zero kinematic degrees 
of freedom. To attest to the advantages of this method over bar-node construction, a comparative study is carried 
out using finite element analysis. The results show that, with the same material usage, the sheet-based system has 
improved performance than the framework system under a range of loading scenarios. 
 
Keywords: polyhedral graphic statics, matrix analysis, sheet-based structure, form-finding, funicular structure, 
structural optimization 
 
 
1. INTRODUCTION 

Space frames, featured as lightweight and efficient, 
have been commonly practiced for creating long-
span or cantilever structures. The recent 
development of three-dimensional graphic statics 
using polyhedral reciprocal diagrams, usually 
referred to as polyhedral graphic statics (PGS), 
provides an approach to designing complex and 
multi-layer 3D funicular frameworks while being 
aware of the internal force distribution [1]. The 
dimensions of the members can be determined based 
on their internal forces, which ensures a high 

structural efficiency under the specific design loads. 
However, those space frames have certain 
shortcomings. When the actual loads are different 
from the design loads, the nodes of the 3D 
frameworks may undergo considerable bending 
moments, and the safety of the structure relies 
heavily on the nodal bending resistance. Moreover, 
when it comes to complex irregular space frames, the 
unique geometries of bars and nodes usually lead to 
high costs during fabrication and assembly. 

It’s worth noting that the forms found through PGS 
have intrinsic planarity that can be harnessed for the 
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design of sheet-based structure systems, which can 
avoid the issues brought by the space frames. Sheet-
based systems have certain advantages over space 
frames because of their material accessibility, 
processibility, low cost, and applicability to large 
scales [2]. Sheet materials can be easily processed by 
various fabrication techniques such as laser cutting, 
CNC milling, CNC bending, waterjet cutting, etc. In 
terms of structural performance, a sheet-based 
system provides more stability and is less vulnerable 
to various loading scenarios because the forces can 
be transferred and distributed across the faces. 

1.1. Background and Related Work 

The recent development of 3D graphic statics greatly 
increased the ease of designing spatial structures. 
There are two subcategories in the realm of 3D 
graphic statics using reciprocal diagrams, vector-
based [3] and polyhedron-based (PGS) [1], which 
follow different rules in constructing the form and 
force 3D dualities. The polyhedron-based approach 
was initially introduced by Rankine [4] and later 
developed by Maxwell [5]. Compared to the vector-
based method, it guarantees the inherent planarity 
which can be exploited for sheet-based 
materialization. 

Several research projects investigate the design of 
sheet-based structures and their materialization 
approach based on PGS. Akbari et al. introduced a 
novel method that translates a cellular polyhedral 
geometry into a polyhedral surface-based manifold 
structure named shellular structure [12, 13]. The 
mechanical properties of such structures were 
studied, and they showed significantly enhanced 
performance compared to the strut-based cellular 
structures [14]. A fabrication technique was also 
proposed based on tucking molecules, a method 
introduced by Tachi for designing 3D origami [15], 
and a prototype was made using 0.5mm stainless 
steel [2]. Akbarzadeh et al. showed the possibility 
of materializing a 10m- span, modularized glass 
bridge as a multi-layer system using hollow glass 
units (HGU) made of 1cm glass sheets [16]. Yost, 
et al. physically tested the behaviors of one single 
HGU constructed with 3M™ Very High Bond 
(VHB) tape as bonding material [17], and the 
results show that HGU has a significant amount of 
load capacity. Aiming to address the challenges of 
large-scale constructions using HGU modules 
regarding detail developments, fabrication 
constraints, and assembly logic, Lu et al. presented 

the design and fabrication of a 3 m-long double-
layer glass bridge prototype [18, 19]. 

The matrix analysis methods have been created and 
developed since the 1930s for structural evaluation 
purposes. For the analysis of frames using the classic 
forces method, the non-matrix approach initiated by 
Maxwell [6] has been routinely taught to aerospace, 
civil, and mechanical engineering students and offers 
a substantial scope of ingenuity to experienced 
engineers through a clever selection of redundant 
force systems [7]. A matrix analysis framework was 
then found convenient for organizing those 
calculations. With a focus on pin-jointed spatial 
frameworks, Pellegrino and Calladine [8] formulated 
an algorithm that evaluates the performance of the 
framework rapidly by determining the rank of the 
kinematic matrix and the bases of its four linear-
algebraic vector subspaces. Specifically, it offers 
complete details of any states of inextensional 
deformation that a framework may possess. For the 
face and hinge systems, matrix analysis is also used 
in the folding simulation of rigid origami, where the 
loops of bars simulate rigid faces, and the 
connections between faces act as hinges. The idea of 
representing triangulated origami as a pin-jointed 
framework was first proposed by Schenk and Guest 
[9]. Filipov et al. [10] improved this method with 
new triangulation schemes for quadrilateral facets. 
Zhang et al. [11] further generalized the triangulation 
schemes for any n-gons. 

1.2. Problem Statements and Objectives 

As shown above, sheet-based structures made 
through PGS are advantageous because sheet 
elements constrain the nodal kinematic degrees of 
freedom and provide more load paths. However, not 
all sheet elements in the form generated through PGS 
are necessary as long as the load paths are preserved, 
and the system does not have kinematic degrees of 
freedom. By removing redundant sheets, the material 
cost can be reduced, and the structural efficiency can 
be further improved.  

The design principle is inspired by trusses, where the 
beam members are connected in a way that they are 
geometrically restrained. Therefore, when a truss is 
loaded, the forces are mostly transferred through the 
axial directions of the beam members without 
needing much nodal bending resistance. Similarly, 
for a sheet-based system, this geometric restraining 
effect is desired such that its load-bearing capacity 
does not rely much on the edge bending resistance.  
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Figure 1: A small-scale physical model made of Bristol paper 

In more technical terms, this “restraining” effect can 
be described as zero kinematic degrees of freedom, 
meaning that there is no mechanism in the structure. 
In order to know whether a structure is kinematically 
determinate or indeterminate, the matrix analysis 
method is incorporated for kinematic analyses. The 
matrix analysis method has been used to analyze pin-
jointed inextensional frameworks. In this paper, it is 
adapted for the analysis of rigid face and frictionless 
hinge systems because a rigid face can be simulated 
by a cluster of kinematically determinate pin-jointed 
bars. The performance of this face-hinge system is a 
good indicator of the performance of a real 
engineering structure constructed with rigidly 
connected sheet materials. Zero kinematic degrees of 
freedom implies a structure with more stability and 
better performance. This adapted matrix analysis 
approach is then incorporated into a computational 
pipeline to help find an efficient set of faces adequate 
for the construction of a kinematically determinate 
face-hinge structure (Figure 1). 

1.3. Contributions 

Based on PGS, this paper introduces a method for 
designing sheet-based funicular structures that are 
featured as lightweight and multi-layer. There are 
several main contributions: first, it provides a new 
way of utilizing PGS for designing efficient sheet-
based structures; second, it adapts the matrix analysis 
method for the kinematic analysis of face and hinge 
structural system; finally, a computational pipeline is 
created as a tool that can be exploited by designers.  

2. METHOD 

This section is organized into three parts. First, the 
base geometry is generated using PGS. Next, the 
matrix analysis method is adapted for the kinematic 
analysis of sheet-based structures. This is then 
incorporated into a computational workflow that 
helps determine an efficient group of faces adequate 
to keep the kinematic stability and load paths. 

2.1. Base Geometry Preparation: Form-
Finding through Polyhedral Graphic Statics 

 

Figure 2: Form-finding of a single-layer funicular shell 
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The workflow starts with form-finding using PGS. In 
this section, a single-layer funicular shell is used as 
an example for the explanation and demonstration of 
the design principles (Figure 2). As mentioned 
earlier, the intrinsic planarity allows the form to be 
delivered as a faceted shell in addition to a space 
frame (Figure 2d). The goal is to find an efficient set 
of faces that does not have any mechanisms while 
maintaining the structural form, i.e., keeping all the 
load paths. Not all faces in the original faceted 
geometry are needed to achieve the kinematic 
determinacy, hence a computational pipeline is 
devised to help find a reduced number of faces that 
satisfy the requirements. 

2.2. Matrix Analysis Method and Adaptation 

Before diving into the details of the computational 
pipeline, the matrix analysis method for pin-jointed 
inextensional framework and its adapted method for 
face-and-hinge structures are explained first as they 
are the basis of the computational pipeline. The 
kinematic analysis of a pin-jointed inextensional 
framework starts from the assembly of the kinematic 
matrix following the steps formulated by Pellegrino 
and Calladine [8]. The form can be depicted with 3 
characteristics: v vertices connected by e edges and 
constrained by k kinematic constraints (each defined 
as one constrained degree of freedom in X, Y, or Z 
directions) to a rigid foundation. 

 
Figure 3: An example edge and the geometric attributes 

describing nodal displacements and edge elongation 

There are also two sets of kinematic variables to be 
considered: the elongation δ i for each edge i, and the 
displacements djx, djy, djz along X, Y, and Z axes in 
3D Euclidean space for each vertex j. Their 
relationship (illustrated in Figure 3) can be written as 

𝛿𝛿𝑖𝑖 × 𝑙𝑙𝑖𝑖 = �𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑞𝑞�𝑑𝑑𝑝𝑝𝑝𝑝 + �𝑦𝑦𝑝𝑝 − 𝑦𝑦𝑞𝑞�𝑑𝑑𝑝𝑝𝑝𝑝 + �𝑧𝑧𝑝𝑝 − 𝑧𝑧𝑞𝑞�𝑑𝑑𝑝𝑝𝑝𝑝 −
�𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑞𝑞�𝑑𝑑𝑞𝑞𝑝𝑝 − �𝑦𝑦𝑝𝑝 − 𝑦𝑦𝑞𝑞�𝑑𝑑𝑞𝑞𝑝𝑝 − �𝑧𝑧𝑝𝑝 − 𝑧𝑧𝑞𝑞�𝑑𝑑𝑞𝑞𝑝𝑝  (1) 

where li is the length of edge i, p and q are the 
endpoints of edge i. Assemble all equations for the 
e edges in matrix form as 

𝚫𝚫 = 𝐀𝐀 ⋅ 𝒅𝒅      (2) 

Here 𝚫𝚫 is the vector of e elongation coefficients, each 
defined as 𝛿𝛿𝑖𝑖 × 𝑙𝑙𝑖𝑖 

𝚫𝚫 =

⎝

⎜
⎛
𝛿𝛿1 × 𝑙𝑙1

⋮
𝛿𝛿𝑖𝑖 × 𝑙𝑙𝑖𝑖
⋮

𝛿𝛿𝑒𝑒 × 𝑙𝑙𝑒𝑒⎠

⎟
⎞

      (3) 

A is the e by 3v–k kinematic matrix, written as 

𝐀𝐀𝑻𝑻 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

⋮ ⋮ ⋮
⋯ 𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑞𝑞 ⋯
⋯ 𝑦𝑦𝑝𝑝 − 𝑦𝑦𝑞𝑞 ⋯
⋯ 𝑧𝑧𝑝𝑝 − 𝑧𝑧𝑞𝑞 ⋯
⋮ ⋮ ⋮
⋯ 𝑥𝑥𝑞𝑞 − 𝑥𝑥𝑝𝑝 ⋯
⋯ 𝑦𝑦𝑞𝑞 − 𝑦𝑦𝑝𝑝 ⋯
⋯ 𝑧𝑧𝑞𝑞 − 𝑧𝑧𝑝𝑝 ⋯
⋮ ⋮ ⋮ ⎠

⎟
⎟
⎟
⎟
⎟
⎞

   (4) 

d is the vector of 3v–k displacements, written as 

𝒅𝒅 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

⋮
𝑑𝑑𝑝𝑝𝑝𝑝
𝑑𝑑𝑝𝑝𝑝𝑝
𝑑𝑑𝑝𝑝𝑝𝑝
⋮
𝑑𝑑𝑞𝑞𝑝𝑝
𝑑𝑑𝑞𝑞𝑝𝑝
𝑑𝑑𝑞𝑞𝑝𝑝
⋮ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

      (5) 

The kinematic indeterminacy m, meaning the 
number of independent mechanisms, can then be 
determined by the relationship between the numbers 
of equations and unknowns, where an important 
concept of rank rA comes into play: 

𝑚𝑚 = 3𝑣𝑣 − 𝑘𝑘 − 𝑟𝑟𝐀𝐀     (6) 

It’s important to note that, as stated by Pellegrino, the 
kinematic indeterminacy here may include the rigid 
body motion of the framework. In other words, when 
no vertex is constrained to a foundation, a framework 
will have a kinematic indeterminacy of greater than 
or equal to 6, including 3 translational and 3 
rotational rigid body degrees of freedom. In the 
scope of this paper, the rigid body motions are named 
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external kinematic indeterminacy mex, and the 
mechanisms at the vertices are named internal 
kinematic indeterminacy min. They satisfy the 
equation 

𝑚𝑚 = 𝑚𝑚𝑒𝑒𝑝𝑝 + 𝑚𝑚𝑖𝑖𝑖𝑖     (7) 

When detecting the internal mechanisms of the 
structure, the external indeterminacy mex should be 
excluded. The calculation of mex is based on the k 
kinematic constraints to the rigid foundation and is 
omitted here. All examples in this paper are set up 
with adequate kinematic constraints to the rigid 
foundation such that mex is zero. For the example 
geometry, there are 24 bars, 12 unconstrained 
vertices, and 4 other vertices set up as fully 
constrained (Figure 2d). The rank of the kinematic 
matrix is calculated to be 12, therefore the internal 
kinematic indeterminacy is 12 given no rigid body 
motion is possible, indicating that the framework has 
12 internal independent mechanisms. 

The locations of the mechanisms can then be 
obtained by solving for the vertices that have 
potential displacements. Since the edges in the 
framework are assumed rigid, there is no elongation 
in any edge, hence Eq.3 can be replaced by 

𝟎𝟎 = 𝐀𝐀 ⋅ 𝒅𝒅      (8) 

The potential displacements of the vertices can be 
obtained by solving for d, which is equivalent to 
solving for the null space of A. With SciPy [20], the 
36 by 12 orthonormal basis of the null space can be 
computed through singular value decomposition 
(SVD). The linear combination of the 12 columns 
represents the possible infinitesimal displacements 
of the unconstrained vertices. If an unconstrained 
vertex is unmovable, meaning that it’s geometrically 
restrained by other edges, its displacements will 
always be zero under any linear combinations. Some 
random displacement scenarios are exaggerated and 
visualized in Figure 4, and the locations of the 
mechanisms can be found. As a side note, each 
displacement scenario is interrelated to a set of 
external loads that cannot be balanced, the 
magnitudes and directions of those loads are not 
discussed in this paper. 

When the structure is built with rigid faces, some 
additional planar constraints are needed. Those 
constraints can be implemented using helper edges 
and vertices for the “stiffening” effect. The edges 
related to each face need to form a rigid body such 
that the resulting new pin-jointed framework 
performs like a face and hinge structure (Figure 5). 

 
Figure 4: Exaggerated infinitesimal deformations of the 

framework 

 
Figure 5: Pin-jointed framework performs like a face-

hinge structure 

 
Figure 6: Helper edges and vertices are added for the 

simulation of rigid faces 

The mathematical relationship between the number 
of required helper edges and the number of 
polygonal face sides is then established following a 
method proposed by Zhang et al. [11]. As exploited 
by [9], a triangular framework can be directly used 
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for the folding simulation of triangular origami 
without any helper edges and vertices. For any side 
count that is larger than 3, helper edges and vertices 
are needed (Figure 6). Later, the kinematic 
indeterminacy and locations of mechanisms can be 
determined for the framework with certain rigid 
faces. As illustrated in Figure 7, the kinematic 
indeterminacy of the pin-jointed framework is 
suppressed with an increasing number of rigid faces, 
and the framework becomes kinematically stable 
after 7 rigid faces are added. 

2.3. Algorithmic Design 

After establishing the analysis method that is 
compatible with rigid faces, an iterative algorithm is 
then devised to help determine the reduced group of 
faces that are sufficient to keep the kinematic 
stability and load paths. In each iteration, one rigid 
face is added to the framework, and it stops when the 
internal kinematic indeterminacy becomes zero. 
Figure 7 shows the decreased kinematic 
indeterminacy as more faces are added to the 
framework. Notably, the sequence of adding rigid 
faces significantly affects the result of this algorithm. 
For example, Figure 8a to 8d show 4 cases of adding 
7 rigid faces, in which 3 become stable while 1 is still 
kinematically unstable. Besides, since the goal is to 
use only sheet materials for the construction of the 
structure, naked edges are not allowed in the result 
(Figure 8e). To obtain an efficient number of faces 
and therefore achieve higher structural efficiency, 
the sequence of adding rigid faces needs careful 
consideration. The design of the computational 
pipeline is illustrated in Figure 9a. 

 
Figure 7: Reduce kinematic indeterminacy with more rigid 

faces 

 
Figure 8: (a)-(d) Kinematic indeterminacies on different 

sets of 7 faces, (e)the solution without naked edges 

The algorithm starts with the input of polyhedral 
geometry, including all vertices vi, edges ei, and 
faces fi. The vertices and edges are used to construct 
the initial framework, and the faces are the 
candidates to be added. Next, the constraints are set, 
and the initial min of the framework is calculated. 
There is no face stiffened at this point. To help 
determine the sequence for adding faces, the concept 
of priority is introduced, where a larger priority 
means a face will be added first. For each face, its 
priority pri is calculated based on its area a, the 
number of neighbor faces fn, and the number of 
single-valence edges ef it has. A larger area leads to 
a smaller priority because less area means less 
material and hence higher efficiency. More neighbor 
faces lead to a larger priority because it tends to 
reduce more degrees of kinematic indeterminacy. In 
the case of sheet-only systems, any face with an edge 
of single-valence, meaning that the edge only 
belongs to one face candidate, has an infinite priority 
since it is required to keep the load paths. Based on 
the description above, the priority function can be 
formulated as 

𝑝𝑝𝑟𝑟𝑝𝑝 = �
∞, 𝑒𝑒𝑓𝑓 > 0

𝑥𝑥(1 − 𝑎𝑎) + 𝑦𝑦𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑓𝑓 = 0   (9) 

where a is the face area mapped to range 0-1; x and 
y are coefficients that can be adjusted to tune the 
weights of a and fn. Also, this pipeline allows design 
decisions to be incorporated into the priority 
function. If certain face candidates are required due 
to the functionality of the structure, its priority will 
be overwritten to positive infinite. Contrarily, if any 
face candidate is unwanted, its priority will be 
overwritten to zero. After, the priorities of all face 
candidates are calculated, and the faces are sorted 
with descending priority. Then, faces are iteratively 
added to the framework. In each iteration, the face 
with the highest priority is removed from the list of 
candidates and “stiffened”. The stiffening is realized 
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Figure 9: The computational flowchart for determining the faces sufficient to stabilize the framework

by adding helper vertices according to the rule 
described above in Figure 6. This is then followed by 
calculating the new min with all helper vertices and 
edges. If min stays the same compared to the last 
iteration, meaning that this newly added face doesn’t 
help constrain the mechanisms, it will be 
“unstiffened” by removing the corresponding helper 
vertex and edges. This process repeats until min 

becomes zero. The final step is to add additional 
faces in order to eliminate the naked edges and 
vertex-to-vertex connections (see section 3.1 for 
more details) since the structure is designed to be 
built with only sheet materials and the original load. 
As a result, the output faces function as a 
kinematically stable face-hinge structure that 
maintains all primary load paths. 
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3. CASE STUDY 

In this section, the method outlined above is used to 
design a bridge to attest to the proposed method. A 
comparative study is carried out using finite element 
analysis (FEA). A small-scale physical model is also 
made to explore the connection details between the 
sheets. 

3.1. Base Geometry and Generation Process 

The form and force diagrams generated using PGS 
are shown in Figure 9b, c. 10 kN is used as the total 
design load applied on the top of the structure, and 
the total span is set to 3 m. The face-adding process 
begins after having the base framework geometry. 
Eight vertices are first chosen as pin anchors to 
constrain the structure (Figure 9c). No faces are 
added at this point. Due to its functionality as a 
bridge, 31 top faces are determined as must-haves for 
people to walk on. Later, the iterative face-adding 
algorithm is invoked which finds the additional faces 
with the least area that reduce the internal kinematic 
indeterminacy to zero, meaning that there is no 
mechanism across the structure (Figure 9d). Next, a 
secondary iterative algorithm is needed to add the 
minimum set of faces for removing naked edges 
(Figure 9e). The resulting structure may have vertex-
to-vertex connections between adjacent faces as 
illustrated in Figure 9e, which causes problems for 
materialization. Therefore, one further action is 
taken to add additional faces that help eliminate 
those vertex-to-vertex connections. The final 
structure is shown in Figure 9f. 

3.2. Comparative Numerical Study 

To further understand the mechanical performance 
of the design, a comparative numerical study is 
carried out on both the sheet-based structure and 
space frame using the Finite Element Method 
(FEM). Structural steel is used as the material, and 
the total material usage is controlled at 66.5 kg for 
both structures. The structures are simply supported 
on the vertices of two ends of the bridge, and they 
are simulated under two static loading scenarios: first 
under the design load of 10 kN distributed on the top 
vertices (Figure 10a, b), then under a point load of 3 
kN (Figure 10c, d). For the first loading scenario, 
both structures reported a max displacement below 
0.8 mm, and the space frame slightly outperforms the 
sheet-based structure. For the second loading 
scenario, the max displacement of the sheet-based 
structure remains at a low level. However, the space 
frame reports that of more than 45 mm, indicating a 

high risk of failure. The results show that although 
the sheet-based structure performs slightly worse 
than the space frame under the design loads, it’s 
potentially more versatile in taking a wider range of 
loads in real-world applications. 

 

Figure 10: Comparative study with FEA on the sheet-
based and framework structures under two load cases 
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Figure 11: A simple physical load test on the small-scale model made of Bristol paper 

 
Figure 12: Strips and tabs facilitate the fabrication and assembly of the model 

 

3.3. Small-Scale Physical Model 

A 1:6 physical model spanning 0.5 m is made using 
Bristol paper (Figure 11). For a complex non-
manifold geometry like this, two techniques are used 
to facilitate the fabrication and assembly. First, the 
total 283 faces are merged into 35 continuous strips 
and unrolled onto flat sheets such that they can be 
laser-cut and assembled with fewer parts. Second, all 
edge connections are realized by small overlaps 
(tabs) bonded with glue (Figure 12). The model can 
take 2.3 kg of load with a span of 0.5 m and a self-
weight of 110 g, manifesting minor deflections. 

4. CONCLUSION AND FUTURE WORK 

This paper presents a novel workflow that adapts and 
combines the matrix analysis method with 
polyhedral graphic statics to facilitate the design of 
multi-layer sheet-based lightweight funicular 
structures with the minimum cost of sheet materials. 

The numerical simulation and physical small-scale 
prototype both show that this system can achieve 
considerable load capacity with a low material cost. 
Some materialization strategies are also explored 
through the physical model. In future steps, the 
buckling issue of thin sheet materials will be 
considered in the computational pipeline, and a 
variety of multi-layer forms will be designed and 
studied using more comprehensive numerical 
simulations. Moreover, a larger-scale prototype will 
be constructed and tested to gain a further 
understanding of its real-world performance. 
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