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Abstract
This paper presents a simple method to calculate nodal displacements of kinematically indeterminate pin-
jointed frameworks using matrix analysis, aiming to facilitate the early-stage design and analysis of space
frames. This method can also inform a novel funicular form-finding approach by iteratively accumulating
nodal displacements until reaching a new state of equilibrium. This method assumes that the framework
is massless and inextensional, and requires only minimal inputs such as the frame geometry, support
locations, and force vectors. The method intends to provide fast and preliminary engineering insights
into the kinematic behavior of the framework, like identifying critical locations and suggesting new
forms that best fit the force vectors. The proposed method can be a useful tool for designers in the early
stages of design, providing them with quick and intuitive displacement results to inform design iterations.
By using this method, designers can bridge the gap between early-stage designs and in-depth engineering
rationalizations. The results can be used to identify potential problems or limitations in the design and
suggest improvements or modifications to optimize the design. This method has been implemented as
part of a Grasshopper® plug-in that is freely available for designers to explore. Several case studies are
also demonstrated to show how this method can facilitate early-stage space frame designs.
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1. Introduction
Space frames are commonly used in the engineering world at various scales due to their lightweight and
high efficiency. Usually, the initial form-finding and schematic design requires the participation of expe-
rienced engineers with structural intuition and knowledge of structural analysis and material properties.
The geometry-based structural design method based on 2D and 3D reciprocal diagrams developed since
the 19th century [1–12], namely 2D/3D graphic statics (GS), allows designers without limited knowledge
in the engineering field to create, manipulate, and analyze structural forms while knowing the internal
force distributions. However, those preliminary structural forms are usually kinematically unstable and
are generated solely based on the design loads, which only represent the equilibrium for this specific load
case. That is, when the applied loads are different from the design loads, the structural form may have
deflections. To ensure their safety and reliability in real-world scenarios with more complex boundary
conditions and material properties, it is crucial for professionals to carefully examine and evaluate them
using more rigorous engineering methods such as finite element analysis (FEA) before moving into de-
sign development. The design process often requires multiple iterations, and designers usually need to
take the evaluation and analysis results to inform and adjust the forms.

There is a gap between the geometric-based form-finding process and the more sophisticated engineering
rationalization. To bridge this gap, this paper proposes matrix analysis methods as an intermediate stage,
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which can provide designers with engineering insights while maintaining clarity and simplicity. During
the matrix analysis, a structural form is simplified and abstracted as an easy-to-analyze pin-jointed inex-
tensional framework, and its equilibrium matrix and kinematic matrix (also called compatibility matrix)
can be constructed. Although space frames are often made with rigid joints, the behavior of a pin-jointed
frame with the same configuration could be a good indicator and estimate of the performance of real
engineering structures. By using matrix analysis methods, designers can obtain a wealth of static and
kinematic information that cannot be abstracted from the conventional formulation without considerable
effort [13]. It allows a better understanding of the structure’s behavior under different load cases and
empowers designers to make informed decisions throughout the design process.

Focused on the kinematic aspect of matrix analysis, this paper proposes a way to calculate the nodal
displacements using minimal inputs, which can then be exploited to inform a novel approach for form-
finding, aiming to facilitate the early-stage design of space frames. Nodal displacements serve as an
intuitive indicator and can be used for spotting critical locations for a specific load case. Moreover,
the deformed configuration often represents a more appropriate form for this load case, suggesting an
approach for form-finding and modification.

1.1. Related work
1.1.1. Matrix analysis on the static and kinematic indeterminacies of pin-jointed frameworks

Matrix analysis is found convenient in organizing calculations in engineering fields such as aerospace,
civil, and mechanical engineering. With a focus on pin-jointed frameworks, Calladine [14], Pellegrino
and Calladine [15] formulated an algorithm that evaluates the static and kinematic indeterminacies in a
rapid manner by determining the rank of equilibrium and kinematic matrices and the bases of its four
linear-algebraic vector subspaces. Specifically, it offers complete details of any states of self-stress and
modes of inextensional deformation that a framework may possess. Lu et al. [16] adapted this method
from bars to faces and applied it to the design of multi-layer sheet-based funicular structures by ensuring
all mechanisms are restrained. Pellegrino [17] later presented a matrix algorithm that analyzes the mech-
anisms and nodal displacements of a pre-stressed network upon change of loads, which leads to a new
deformed configuration and can be used for form-finding. This algorithm requires the input of material
behaviors such as Young’s modulus and cross-sectional areas of each bar.

1.1.2. Methods for calculating nodal displacements and the corresponding form-finding approaches

Existing form-finding methods of space frames based on nodal displacements can be categorized into
three main clusters [18], including geometric matrix methods [19, 20], stiffness matrix methods [21],
and dynamic relaxation methods [22, 23]. Geometric stiffness methods are material-independent, with
only a geometric stiffness that relates the forces to the length of the edge members. Stiffness matrix
methods are based on the standard elastic and geometric stiffness matrices. Both geometric and stiffness
matrix methods find the equilibrium by reducing unbalanced forces. Dynamic relaxation methods, on the
other hand, calculate the velocity and acceleration for each time increment, until the structure becomes
static due to artificial damping. A variety of inputs need to be prepared in order to use such methods. For
stiffness matrix methods, the elastic properties need to be provided in order to set up the tangent stiffness
matrix. For the geometric matrix methods, a prescribed set of force densities together with the applied
forces need to be provided in order to find a form. The dynamic relaxation methods also require elastic
properties and masses to calculate the physical movements.

1.2. Problem statement and objectives
As stated above, an intermediate stage is desired to bridge the gap between geometric-based form-finding
and engineering rationalization. Analysis of the equilibrium matrix and the kinematic matrix is a great
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candidate as it can provide a wealth of static and kinematic information without much effort, maintaining
simplicity and clarity for early-stage design iterations. However, for more detailed information such as
nodal displacements, it still needs to assign material-related parameters to the framework in order to
carry out calculations. This paper aims to provide a simple method for calculating nodal displacements
that requires minimal input such as the structural form and force vectors on the nodes, hoping to assist
preliminary space frame designs and enrich the available toolset. In other words, this method is able to
qualitatively analyze the nodal displacements given a user-defined framework with support conditions.
The results can be used in the following ways:

• Display the tendency of nodal displacements if the applied force vectors cannot be balanced.

• Identify critical locations with large displacements.

• Accumulate the displacements incrementally, serving as an accurate kinematic simulation tool.

• Iteratively reverse and accumulate the displacements towards a different state of equilibrium, sug-
gesting a new form that better fits this load case.

2. Method
This section explains in detail how the nodal displacements are calculated using matrix analysis with the
inputs of a 3D framework, a group of force vectors associated with the nodes, and support locations.
It requires three simple steps: constructing the equilibrium matrix and kinematic matrix for the given
framework and support locations; calculating unbalanced forces given the force vectors; calculating nodal
displacements based on the unbalanced forces.

2.1. Construction of the equilibrium matrix and kinematic matrix
The construction of the equilibrium matrix and kinematic matrix follows the convention established by
Pellegrino and Calladine [15]. The framework is described as b bars (or edges) pin-jointed by j nodes (or
vertices) with k supported dimensions, each supported dimension defined as constrained movement along
one direction. Two kinematic variables and two static variables are considered, they are displacements
of the vertices assembled in a [3 j − k× 1] vector d; elongation coefficients of the edges assembled in
a [b× 1] vector e, each entry defined as ei × li where ei is the elongation of the i-th edge, li is the edge
length; external forces on the vertices assembled in a [3 j− k× 1] vector f; and tension densities in the
edges assembled in the [b× 1] vector t, each entry defined as ti/li where ti is the tension of the i-th
edge. The elongation coefficients and tension densities can be easily turned to the actual elongations and
tensions as the edge lengths are known. All forces applied to each node must be in equilibrium, written
as

A · t = f, (1)

where A is the [3 j− k×b] equilibrium matrix. And all extensions in the edges must be compatible with
the nodal displacements, written as

B ·d = e, (2)

where B is the [b×3 j− k] kinematic matrix, or compatibility matrix. It’s easy to prove by the principle
of virtual work that the equilibrium matrix and kinematic matrix are the transposes of each other [14]

B = AT. (3)

2.2. Calculation of unbalanced forces
Eq.1 is helpful in terms of calculating the forces in the edges given f. However, not all f ∈ R3 j−k can
be equilibrated by the framework. According to Pellegrino and Calladine [15], the framework will only
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be in equilibrium when f lies in the column space of the equilibrium matrix A. Otherwise, mechanisms
(pin-joints) will be activated when it lies in the left null space of A. In such cases, assuming that the
framework has no mass, then the least squares solution of t, denoted as t̂, can be used to estimate the
edge forces, calculated as

t̂ = (ATA)−1ATf (4)

when A has a full rank. If not, t̂ can be calculated as

t̂ = A+f, (5)

where A+ denotes the Moore-Penrose Inverse of A.

The principle of least action can provide some evidence for it. The action S of the framework is defined
as the integral of the Lagrangian L between time t1 and time t2, written as

S =
∫ t2

t1
L(t)dt (6)

where L is the difference of the kinetic energy T and potential energy V.

L = T−V (7)

For the framework, it’s assumed as particles connected by massless bars. Let the mass of each particle
be m, then T and V can be written as

T =
1
2

3 j−k

∑
a=1

mv2
a (8)

V =
j−kz

∑
i=1

mgzi (9)

where va is the velocity of the particles along each 3D Euclidean axis, zi denotes the z-coordinate the the
i-th particle, and kz denotes the number of nodes that have their z-coordinate constrained.

Since the whole system is not in equilibrium, the velocity va will be determined by the summation of
all external forces and all axial forces in the edge members, namely residual forces or unbalanced forces
and assembled in a 3 j - k vector fr, written as

fr = f−At̂ (10)

where external forces f and equilibrium matrix B are known. Then the Lagrangian of the middle point is
used to approximate the Lagrangian for the small time interval dt. The vertex velocities, assembled in a
3 j - k vector v can be written as

v =
fr

2m
dt. (11)

Then, we can solve for the vertex velocity v of the framework by minimizing the Lagrangian of the small
time interval

minimize
t∈Re

L = T−V =
1
2

3 j−k

∑
a=1

mv2
a −

j−kz

∑
i=1

mgzi =
dt2

8m
f2
r −

j−kz

∑
i=1

mgzi. (12)
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When the mass of the vertex particles are infinitely small, then the kinetic energy in the Lagrangian
becomes dominant

minimize
t∈Re

L =
dt2

8m
f2
r . (13)

which is equivalent to solving for the least square solution t̂ of Eq. 1, proving that the residual forces fr
can be calculated by Eq. 10. When the frame is kinematically determinate, the kinematic indeterminacy
m equals zero

m = 3 j− k− rA = 0, (14)

where the rank of A is denoted as rA. This shows A has a full rank and Eq.1 has a solution. In this case,
the unbalanced forces will be zero.

2.3. Transforming unbalanced forces to nodal displacements
As mentioned by Pellegrino [17], any infinitesimal inextensional displacement from the original config-
uration, while leaving the prestress unchanged, results in unbalanced loads of magnitude proportional
to the size of the displacement. This is also true in our case when restress does not exist. That means
the nodal displacements in the inextensional mode can be directly represented as the residual forces fr
multiplied by a user-specified scale factor ξ

d = ξfr. (15)

This can be proved using Eq. 2
Bd = ξBfr. (16)

Substitute fr using Eq.10,
Bd = ξB(f−At̂). (17)

Then substitute t̂ using Eq.4, and substitute B using Eq.3,

Bd = ξAT(f−A(ATA)−1ATf) = ξ(ATf−ATA(ATA)−1ATf) = ξ(ATf−ATf) = 0, (18)

which shows zero edge elongation coefficients, meaning that the nodal displacements are under inexten-
sional mode. That is, there won’t be any edge elongation during the displacement, and the result can be
a good estimation of the behavior of pin-jointed rigid bars. Note that the above calculations are based
on the small displacement theory. The displacement results are accurate when ξfr is small. Otherwise,
matrices A and B are no longer valid and need to be updated.

2.4. Accumulation of the small displacements
Given the applied force vectors are unchanged and always attached to the nodes, the small displacements
can be incrementally accumulated until the frame reaches a new form where all applied force vectors can
be balanced and there is no force residual. This process simulates the more accurate kinematic behavior
of the frame in response to the applied forces. Note that matrices A and B need to be updated after
each step. The updated equilibrium matrix and kinematic matrix are denoted as A′ and B′, respectively.
Again, when ξfr is small the displacements are accurate at each step and the change of edge lengths is
negligible. The Moore-Penrose Inverse can be used again to determine whether the applied forces are all
balanced. The deformed frame reaches a stable state only when Eq.19 holds:

f = A′A′+f. (19)
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2.5. Accumulation of the reversed displacement: towards a novel form-finding approach
Instead of deforming along the displacement direction, the frame can also deform opposite to the dis-
placement direction at each step, acting like a pre-deformation to counteract the displacements. This
iterative operation is the same as the process described in Section 2.4, except that the displacements ap-
plied to the frame are reversed at each step. After reaching a new state of equilibrium, the new frame
geometry will represent a new form that fits the applied load. The computational pipeline of those pro-
cesses are illustrated in Figure 1.

StopAA+f = f ? or
A'A'+f = f ?

Input frame, support
location, force vectors f

Construct matrix A, B or
update A', B'

Calculate d = ξ (f-A+f) 

Start

Apply d (-d) to the frame 

Yes

No

Figure 1. The computational flowchart of incremental accumulation of the (reversed) displacements.

3. Case study
The above-mentioned process has been implemented and included as part of a Grasshopper® plug-in
named PolyFrame 2 [24]. The matrix computations are supported by Numpy.NET [25], a .NET binding
of the scientific computing library Numpy [26]. With the help of this implementation, several studies are
created to demonstrate the possible use cases.

3.1. Deformation estimation
Although this proposed method for calculating displacements is based on many assumptions such as
massless frame, frictionless pin-joint, and rigid edge, the result can still represent a qualitative estima-
tion of the real behavior of a structure. Figure 2 shows the comparison of analysis results between this
proposed method and the finite element method (FEM). For the FEM, three different materials are sim-
ulated. The results manifest clear relevance between the simple nodal displacement results and the more
rigorous FEM results.

3.2. Simulate the kinematic behavior or find a new form
Figure 3 shows the incremental accumulation of the nodal displacements from an initial flat grid network.
In each step, if the displacements are applied to the previous state of the frame, the result will be a
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Figure 2. Compare the nodal displacement result with FEA.

kinematic simulation in response to the external forces (Figure 3a); otherwise, the result will show a new
form that better fits the applied forces (Figure 3b, 4).

(a) (b)

sup. 1

sup. 2

sup. 3

sup. 4

sup. 1

sup. 2

sup. 3

sup. 4

Figure 3. (a) The nodal displacements are iteratively applied to the frame, (b) The reverse of the nodal displace-
ments are iteratively applied to the frame.

4. Conclusion
This paper presents a simple method to calculate nodal displacements of a pin-jointed framework under
a group of force vectors using matrix analysis. This method assumes that the framework is massless and
inextensional, and requires only minimal inputs such as the frame geometry, support locations, and force
vectors. The method intends to provide fast and preliminary engineering insights into the kinematic be-
havior of the framework, like identifying critical locations and suggesting new forms that best fit the force
vectors. The proposed method can be a useful tool for designers in the early stages of design, providing
them with quick and intuitive displacement results to inform design iterations. By using this method,
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Figure 4. By applying the reverse of the asymmetrical forces, a new bridge geometry can be found that better fits
the new load case.

designers can bridge the gap between early-stage designs and in-depth engineering rationalizations. The
results can be used to identify potential problems or limitations in the design and suggest improvements
or modifications to optimize the design. This method has been implemented as a software tool that is
freely available for designers to explore. Several case studies are also demonstrated to show how this
method can facilitate early-stage space frame designs.

In summary, the proposed method enriches the toolset for designing space frames, allowing designers to
make informed decisions based on preliminary engineering analysis, and saving time and resources in
the design iteration process.
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