
Computer-Aided Design 166 (2024) 103620

A
0

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Algebraic 3D Graphic Statics with Edge and Vertex Constraints: A
Comprehensive Approach to Extend the Solution Space for Polyhedral
Form-Finding
Yao Lu a, Márton Hablicsek a,b, Masoud Akbarzadeh a,c,∗

a Polyhedral Structures Laboratory, Weitzman School of Design, University of Pennsylvania, Philadelphia, USA
b Department of Mathematics, Leiden University, Leiden, Netherlands
c General Robotic, Automation, Sensing and Perception (GRASP) Lab, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, USA

A R T I C L E I N F O

Keywords:
Algebraic three-dimensional graphic statics
Polyhedral reciprocal diagrams
Geometric degrees of freedom
Tension and compression combined
Vertex and edge constraints
Auxetic material

A B S T R A C T

Built upon a previous algebraic framework for polyhedron-based 3D Graphic Statics (3DGS) that can
numerically solve for a variety of dual diagrams given an input force or form diagram, this paper introduces an
improved algebraic formulation that integrates edge lengths and vertex location constraints for better control
over the results. Those constraints are realized by additional edge and vertex constraint equations to previously
established closing equations. The entire system of equations can be solved using the Moore–Penrose inverse
(MPI) method, and each solution represents a set of compatible edge lengths for the dual diagram to be
constructed. The whole solution space of the equation system provides a wide range of dual diagrams, including
forms with both tensile and compressive members, which can be easily explored and was not possible using
iterative methods or previous algebraic formulations. This improved formulation has been computationally
implemented and released as part of a plug-in software program within the environment of Rhino3D®

and Grasshopper3D®, enriching the structural form-finding toolset for designers, engineers, researchers, and
educators. The tool’s performance and accuracy are demonstrated through a series of comparative studies with
iterative methods. Various case studies are also presented to showcase the application of this method.
1. Introduction

The geometry-based structural design method based on 2D recip-
rocal diagrams, namely graphic statics (GS), has been studied and
developed in the past centuries [1–7]. It can be used for not only struc-
tural analysis but also structural form-finding and has been adopted
in various projects [8]. Graphic statics in three dimensions (3DGS)
was initially explored by Rankine [2] and Maxwell [9] shortly after
the introduction of the 2D method. Recently, this historical method
in 3D has been revitalized by further investigations and the inte-
gration of computational techniques, enabling its application to the
design of complex spatial structures. Amidst the different approaches
of 3DGS using reciprocal diagrams, vector-based [10] and polyhedron-
based [11,12] strategies have been actively developed in the past
few years. In the force diagram of the vector-based approach, the
equilibrium for each node is guaranteed by a closed cycle of force
vectors, where each force vector is parallel to the corresponding edge in
the form diagram, and the vector length indicates its force magnitude.
In contrast, the polyhedron-based approach uses a closed polyhedron to
represent equilibrium for each node, where each face is perpendicular

∗ Corresponding author at: Polyhedral Structures Laboratory, Weitzman School of Design, University of Pennsylvania, Philadelphia, USA.
E-mail addresses: yaolu61@upenn.edu (Y. Lu), m.hablicsek@math.leidenuniv.nl (M. Hablicsek), masouda@upenn.edu (M. Akbarzadeh).

to the corresponding edge in the form diagram, and its area shows the
force magnitude.

Each of these approaches has advantages and disadvantages. As
highlighted by Maxwell [3], the vector-based approach can describe the
equilibrium of almost any 3D frame [13]. However, the form and force
reciprocity is not explicit and intuitive, making its use challenging for
designers without prior knowledge in this field. The polyhedron-based
approach is limited to polyhedral geometries and can only repre-
sent a subset of the equilibrium states. Nevertheless, its polyhedral
nature and inherent planarity could facilitate materializations in real-
world practices using sheet materials or modular building blocks. This
property can also be combined with various fabrication techniques
such as concrete 3D printing, origami, and kirigami [14–18]. When
materialized as spatial frame systems, the polyhedral form can also
incorporate various design features to enrich the simple bar-node geom-
etry [19–24]. In material science, polyhedron-based 3DGS can generate
geometries for cellular solids with specific micro-architectures. Recent
research suggests that subdividing the force diagram along specific
vailable online 29 September 2023
010-4485/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cad.2023.103620
Received 28 March 2023; Received in revised form 26 June 2023; Accepted 11 Sep
tember 2023

https://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:yaolu61@upenn.edu
mailto:m.hablicsek@math.leidenuniv.nl
mailto:masouda@upenn.edu
https://doi.org/10.1016/j.cad.2023.103620
https://doi.org/10.1016/j.cad.2023.103620
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2023.103620&domain=pdf

Computer-Aided Design 166 (2024) 103620Y. Lu et al.
Fig. 1. Selected projects designed with polyhedron-based 3DGS. (a) A three-meter span
funicular glass bridge constructed with 1 cm float glass using a modular assembly
technique [16]. (b) A shellular geometry made of one-millimeter stainless steel sheets
with the help of kirigami techniques [15]. (c) A funicular bridge model made of
1 mm paper board [18]. (d) A spatial table made of prefabricated concrete parts [22].
(e) A spatial timber framework prototype that uses kerf bending and zipper [23].
(f) A cellular structure is turned into shellular structure by subdividing the force
diagram [25]. Images (a)–(e) courtesy of PSL, University of Pennsylvania. Image (f)
courtesy of AML3, McGill University.

axes can transform cellular structures that are prone to buckling into
shellular funicular structures that exhibit high structural efficiency and
low structural density [25]. Some design and research projects that use
polyhedron-based 3DGS are selected and shown in Fig. 1. Lee et al. [26]
proposed a novel framework under the polyhedron-based approach
that releases certain geometrical constraints brought by the polyhedral
reciprocity. It is based on the concept of disjointed force polyhedrons,
which allows the adjacent cells in a force diagram to have the same
contact face areas and orientations, but different shapes and vertex
locations. Lee’s framework allows for more flexible control of force
magnitudes of the applied loads as well as the internal force members
and then uses those inputs to inform a wider range of 3D frames beyond
just polyhedral ones, such as tensegrity structures and non-polyhedral
spatial frames. However, it does not hold the reciprocity of the form
and force diagrams and therefore increases computation complexities.

The following sections of this paper focus on the polyhedron-based
approach formulated by Akbarzadeh [11], and the term 3DGS is used
to refer specifically to this formulation unless stated otherwise.

It is important to note that a force diagram can correspond to
multiple form diagrams with the same topology and edge directions
but different edge lengths, and vice versa. This is called geometric
degrees of freedom (GDoF), where the topology and edge directions
are preserved while edge lengths are allowed to vary. Manipulating
2

GDoF will not break the reciprocal relationship and will lead to various
design possibilities. Most implementations of 3DGS rely on procedural
techniques or iterative algorithms based on local nodal operations to
solve for solutions one at a time. Procedural techniques [11] can be
tedious and labor intensive, and they cannot be generalized to a wide
range of inputs. Nodal operation-based iterative algorithms [26–28] are
advantageous in using a unified solver with control over edge lengths,
vertex locations, and face areas under one framework. However, it
requires an input angle tolerance as the criterion to terminate the itera-
tions, meaning that the output will always have some level of deviation.
The smaller the tolerance is, the longer the runtime will be, making
it computationally intensive for complex geometries. Additionally, it
cannot construct reciprocal diagrams with non-convex polyhedrons
that represent tension–compression combined systems, which limits the
flexibility of exploring the full solution space.

The algebraic formulation for the reciprocal diagrams provides a dif-
ferent perspective on the implementation of 3DGS. It extracts the math-
ematical essence of the reciprocal relationship between force and form
diagrams and can leverage the existing numerical computation libraries
to efficiently access the entire solution space, unleashing the potential
of 3DGS in form-finding. The robustness and efficiency of those libraries
allow the manipulation of reciprocal diagrams with greater flexibility,
shorter time, and higher accuracy compared to the alternatives. For
instance, as has been shown in the previous research [29,30], the
algebraic relationship between the form and force allows exploring
multiple equilibrium configurations for a single force diagram, which
was not easy to compute using other approaches.

1.1. Related work

1.1.1. Algebraic 2D graphic statics
Micheletti [31] described the algebraic duality between the recip-

rocal diagrams of self-stressed frameworks following Cremona’s con-
struction. The term algebraic graphic statics was then brought up
by Van Mele and Block [32] as linear equations based on the algebraic
reciprocal constraints. As an analysis tool, it takes a group of connected
lines representing the form diagram as input and calculates the internal
force distribution. The edge lengths of the force diagram can be derived
by enforcing the closed edge vectors of its polygons. Therefore all
internal and external force magnitudes of the form diagram can be
obtained. This was later extended to a bi-directional approach by Alic
and Åkesson [33], where both force and form diagrams can be manip-
ulated and the reciprocal diagrams can be updated instantly, making it
an effective interactive form-finding tool in 2D.

1.1.2. Algebraic 3D graphic statics
Hablicsek et al. [29] established an algebraic framework for 3DGS

where the reciprocal polyhedral diagrams are described through a
linear system of equations that ensures the closed coplanar edge vectors
of the polyhedron faces. This method can use either a force dia-
gram or a form diagram as input and efficiently compute all possible
dual diagrams using closed-form solutions with high accuracy. While
this method also allows user inputs to control edge lengths and thus
provides flexibility in exploring the solution space [34], the vertex
locations and edge lengths cannot be precisely specified by users as
with the iterative method [28]. Akbarzadeh and Hablicsek [35] then
proposed a quadratic formulation capable of accommodating assigned
area and edge lengths. This is particularly useful as it allows the
manipulation of force diagrams with desired face areas, through which
a variety of equilibrium states with both tension and compression can
be explored. Nonetheless, this method is time-consuming due to its
quadratic nature and still, it does not provide precise control over the
location of vertices.

Computer-Aided Design 166 (2024) 103620Y. Lu et al.
1.2. Problem statement and objectives

As previously mentioned, while 3DGS has shown significant po-
tential for real-world applications through a variety of materialization
strategies, existing implementations have not fully leveraged its ca-
pabilities. The iterative method used in PolyFrame can only handle
compressive form-finding and is computationally expensive for com-
plex geometries. The algebraic formulation of 3DGS enables extensive
exploration of the solution space, but it does not provide the same level
of precise control over the vertex locations and edge lengths of the
reciprocal diagrams as the iterative method does.

To address the above-mentioned issues, this paper aims to provide
an enhanced algebraic formulation of 3DGS with vertex and edge con-
straints. This improved formulation has the ability to precisely control
vertex locations and edge lengths while preserving the benefits of high
efficiency, flexibility, and accuracy.

1.3. Paper outline

Section 2 provides a detailed account of how the constrained form
diagrams can be derived given an input force diagram, starting with
a recap of the previous algebraic formulation in Section 2.1, which
is then extended to a new construction method that requires fewer
equations. In Section 2.2, additional edge constraint equations for the
form diagram are explained, followed by the introduction of algebraic
vertex constraints in Section 2.3, where points, lines, and planes can
be taken as constraint geometries. Sections 2.4 and 2.5 delve into the
solution space of the equation system. Section 2.6 explains how the
methodology can be applied to the force diagram itself to constrain
it in the same way as the form diagram. Section 3 provides details
on the implementation of the methodology as a software tool. It in-
cludes a brief performance study and presents the differences from the
iterative methods. Section 4 shows various use cases and scales of the
methodology, demonstrating its versatility and applicability. Section 5
discusses the limitations of the proposed methodology and outlines
possible future improvements to further enhance its performance and
applicability.

1.4. Nomenclatures

The algebraic elements of this paper are denoted as follows; ma-
trices are denoted by bold capital letters (e.g. 𝐀); vectors are denoted
by lowercase, bold letters (e.g., 𝐯), except the user input vectors which
are represented by Greek letters (e.g., 𝜉); the topological data of the
primal diagram are described by italic letters (e.g., 𝑓); and the data
corresponding to the dual and reciprocal diagram are represented by
italic letters with a † sign (e.g., 𝑓 †). Table 1 provides a comprehensive
list of all major notations used in this paper.

2. Method

In the context of 3DGS using polyhedral reciprocal diagrams, both
form and force diagrams consist of polyhedral cells, planar faces,
straight edges, and vertices. Each edge in the reciprocal diagrams shares
an identical vertex with its adjacent edges. As described by Akbarzadeh
[11] and Hablicsek et al. [29], the edges and faces in the reciprocal dia-
grams have specific directions. The face normal must be consistent with
its edge directions following the right-hand rule, the face orientations
must be consistent within each cell, and the cell orientations must be
consistent within each diagram. Therefore, each pair of adjacent faces
shares two versions of an identical edge that have opposite directions.
Similarly, each pair of adjacent cells shares two versions of an identical
face that have opposite normal directions.

A simple example can be used to illustrate the topological rela-
tionship between reciprocal polyhedral diagrams (Fig. 2). The starting
diagram is called primal, 𝛤 , which can either be a form diagram or
3

Table 1
A list of all notations used in this paper.
Topology Description

𝛤 Force diagram
𝛤 † Form diagram
𝑣 # of vertices in 𝛤
𝑒 # of edges in 𝛤
𝑓 # of faces in 𝛤
𝑐 # of cells in 𝛤
𝑒𝑖𝑛𝑡 # of internal edges in 𝛤
𝑓𝑖𝑛𝑡 # of internal face in 𝛤
𝑣† # of vertices in 𝛤 †

𝑒† # of edges in 𝛤 †

𝑓 † # of faces in 𝛤 †

𝑐† # of cells in 𝛤 †

𝑒†𝑖𝑛𝑡 # of internal edges in 𝛤 †

𝑓 †
𝑖𝑛𝑡 # of internal faces in 𝛤 †

Matrices

𝐶𝑒𝑖𝑛𝑡×𝑓𝑖𝑛𝑡 Internal edge-face connectivity matrix of 𝛤
𝐴 Closing matrix
𝐵 Edge constraint matrix
𝐷 Vertex constraint matrix
𝑀 Constrained closing matrix
𝑀+ Moore–Penrose inverse of 𝑀
𝑁𝑥 Diagonal matrix of 𝑛𝑥
𝑁𝑦 Diagonal matrix of 𝑛𝑦
𝑁𝑧 Diagonal matrix of 𝑛𝑧
𝑁 Column-wise stacking of 𝑛𝑥, 𝑛𝑦, 𝑛𝑧
𝑃𝑖 Edge-face connectivity diagonal matrix for 𝑓 †

𝑖
𝑄𝑖 Diagonal matrix that filters a path of edges

Vectors

n̂𝑖 Unit normal vector of internal face 𝑓𝑖
𝑒†𝑖 3D vector representation of the edge 𝑒†𝑖
𝑝𝑖 Target 3D point of the constrained vertex 𝑣†𝑖
𝑝′𝑖 𝑝𝑖 in a local coordinate system
𝑣 3D vector between the constrained vertex pair
𝑣′ 𝑣 in a local coordinate system
𝑛𝑥 𝑥-coords of n̂𝑖
𝑛𝑦 𝑦-coords of n̂𝑖
𝑛𝑧 𝑧-coords of n̂𝑖
𝑛′𝑥 𝑥-coords of n̂𝑖 in a local coordinate system
𝑛′𝑦 𝑦-coords of n̂𝑖 in a local coordinate system
𝑛′𝑧 𝑧-coords of n̂𝑖 in a local coordinate system
𝑏𝑖 Column vector indicating a constrained edge 𝑒†𝑖
𝑙 Target lengths of the constrained edges
𝑑 Column vector of u𝑖, v𝑖, and w𝑖
𝑡 Column vector by stacking 0, 𝑙, and 𝑑
𝑞 Solution to the system of equations

Parameters

𝜉 Parameter for the Moore–Penrose inverse method

Other

𝑟 Rank of 𝑀
u 𝑥-coord differences of a constrained vertex pair
v 𝑦-coord differences of a constrained vertex pair
w 𝑧-coord differences of a constrained vertex pair
u′ u in a local coordinate system
v′ v in a local coordinate system
w′ w in a local coordinate system

a force diagram, and the reciprocal diagram is called dual, 𝛤 †. The
numbers of vertices, edges, faces, and cells of the primal are denoted by
𝑣, 𝑒, 𝑓 , and 𝑐 respectively, and the ones of the dual are super-scripted
with a dagger symbol (†).

These two diagrams are topologically reciprocal: i.e. the vertices
𝑣, edges 𝑒, faces 𝑓 , and cells 𝑐 of the primal topologically map to
the cells 𝑐†, faces 𝑓 †, edges 𝑒†, and vertices 𝑣† of the dual diagram
respectively [36]. One characteristic of this reciprocity is that the
numbers of dual elements in both diagrams are the same. For instance,
the number of edges 𝑒 in the primal is equal to the number of faces
𝑓 † in the dual, and the number of vertices 𝑣 of the primal is equal
to the number of cells 𝑐† in the dual, etc. Adjacency is another key
characteristic of reciprocity, meaning that if two elements in the primal

Computer-Aided Design 166 (2024) 103620Y. Lu et al.
Fig. 2. An example force diagram (𝛤) and its corresponding form diagram (𝛤 †). The
numbers of vertices, edges, faces, cells, internal edges, and internal faces of the force
diagram (denoted by 𝑣, 𝑒, 𝑓 , 𝑐, 𝑒𝑖𝑛𝑡, and 𝑓𝑖𝑛𝑡) are equal to the number of cells, faces,
edges, vertices, internal faces, and internal edges of the form diagram (denoted by 𝑐†,
𝑓 †, 𝑒†, 𝑣†, 𝑓 †

𝑖𝑛𝑡, and 𝑒†𝑖𝑛𝑡) respectively.

are adjacent, then their corresponding elements in the dual diagram are
also adjacent. Moreover, each edge 𝑒𝑖 of the primal is perpendicular to
its corresponding face 𝑓 †

𝑖 in the dual.
Notably, the external faces of a force diagram correspond to the

external edges that represent applied load and reaction forces in the
form diagram. Those external faces and edges are usually colored green
as shown in Fig. 2. Unlike a force diagram where all elements are
closed, a form diagram contains open elements. For example, vertices
only exist at one end of the external edges in a form diagram, so
such edges are open-ended. Also, all faces and cells containing open
edges are also considered open. The closed faces in a form diagram
are defined as internal, and they correspond to the internal edges of
the force diagram. The edges of the internal faces are also defined as
internal, and they correspond to the internal faces of the force diagram.
All internal faces of the force diagram are shaded in blue, with the
darkness indicating their respective areas. The darker the color, the
larger the corresponding area. A similar color code is applied to the
form diagram, where edges are colored blue for compression and red
for tension. The darkness and thickness of each edge correspond to the
area of its respective face in the force diagram.

The algebraic reciprocal construction with constraints starts from
an input primal diagram. It aims to represent the dual diagram using a
system of linear equations. Although both user-created form and force
diagrams can be used as input as shown by Hablicsek et al. [29], this
paper focuses on the form-finding aspect of it and always starts from
force diagrams, so 𝛤 and 𝛤 † always denote force and form diagrams
respectively. Moreover, starting from a form diagram, meaning that an
analysis of its internal force distribution is wanted, is relatively difficult
in the context of 3DGS as the forms with polyhedral features are not
easy to construct directly.

2.1. Linear closing equations for the form diagram

Before having any constraints, the linear closing equations need to
be developed based on the closed coplanar edge vectors associated with
each internal face in the form diagram. This follows the convention
established by Hablicsek et al. [29]. Let 𝑒𝑖𝑛𝑡, 𝑓𝑖𝑛𝑡 denote the number of
internal edges and faces respectively in the force diagram; let 𝑒†𝑖𝑛𝑡, 𝑓

†
𝑖𝑛𝑡

denote the number of internal edges and internal faces respectively in
the form diagram. For each internal face 𝑓 †

𝑖 in the form diagram to be
constructed, we can write an equation that shows its closed edges based
on the edge lengths (Fig. 3). The term edge length in this paper means
a scalar that represents the signed length of an edge vector 𝐞† and is
4

𝑖

Fig. 3. Closing equations can be written based on the closed edge vectors associated
with each face. (a) The faces 𝑓𝑗 are connected to an internal edge 𝑒𝑖 in a force diagram.
(b) The corresponding edges 𝑒†𝑗 in the form diagram surrounding an internal face 𝑓 †

𝑗

that is planar since the edges 𝑒†𝑗 share a common normal vector.

denoted by 𝑞𝑖. All edge lengths of the form diagram can be assembled
in the vector 𝐪.

Since each edge of the force diagram is perpendicular to its corre-
sponding face in the form diagram, the unit direction vector of edge 𝑒†𝑖
in the form diagram is equal to the unit normal vector of face 𝑓𝑖 in the
force diagram. Let 𝐍𝑥, 𝐍𝑦, and 𝐍𝑧 be the [𝑓𝑖𝑛𝑡 × 𝑓𝑖𝑛𝑡] diagonal matrices
whose diagonal entries are the 𝑥-, 𝑦-, and 𝑧-coordinates (respectively)
of the unit normal vectors of the internal faces in the force diagram.
According to Hablicsek et al. [29], the [𝑒𝑖𝑛𝑡 × 𝑓𝑖𝑛𝑡] connectivity matrix
𝐂𝑒𝑖𝑛𝑡×𝑓𝑖𝑛𝑡 shows the connectivity between the internal faces and internal
edges in the form diagram. Then the closed edge vectors can be
represented as

𝐂𝑒𝑖𝑛𝑡×𝑓𝑖𝑛𝑡𝐍𝑥𝐪 = 𝟎 𝐂𝑒𝑖𝑛𝑡×𝑓𝑖𝑛𝑡𝐍𝑦𝐪 = 𝟎 𝐂𝑒𝑖𝑛𝑡×𝑓𝑖𝑛𝑡𝐍𝑧𝐪 = 𝟎. (1)

Those equations can be combined as

𝐀𝐪 = 𝟎 (2)

where 𝐀 is a [3𝑒𝑖𝑛𝑡 × 𝑓𝑖𝑛𝑡] closing matrix written as

𝐀 =

⎛

⎜

⎜

⎜

⎝

𝐂𝑒𝑖𝑛𝑡×𝑓𝑖𝑛𝑡𝐍𝑥
𝐂𝑒𝑖𝑛𝑡×𝑓𝑖𝑛𝑡𝐍𝑦
𝐂𝑒𝑖𝑛𝑡×𝑓𝑖𝑛𝑡𝐍𝑧

⎞

⎟

⎟

⎟

⎠

(3)

Each solution for 𝐪 shows a possible combination of edge lengths in
the form diagram that satisfies the closed edge vectors associated with
every internal face in the form diagram.

2.1.1. Closing matrix with reduced size
The closing matrix 𝐀 can be constructed in another way such that its

size can be reduced to [2𝑒𝑖𝑛𝑡×𝑓𝑖𝑛𝑡]. This optional step could significantly
reduce the execution time when solving the equations systems [37].

In the previous formulation shown by Eq. (1), each closed face in
the form diagram is enforced by three equations that correspond to
the 𝑥-, 𝑦-, and 𝑧-dimensions. This is redundant due to the planarity of
all faces. Under a local coordinate system aligned with the face, this
can be enforced by only two equations that correspond to the local
𝑥-dimension and local 𝑦-dimension (Fig. 4).

Let 𝐧𝑥, 𝐧𝑦, 𝐧𝑧 be the [𝑒†𝑖𝑛𝑡 × 1] (equivalent to [𝑓𝑖𝑛𝑡 × 1]) vector
whose entries are the 𝑥-, 𝑦-, and 𝑧-coordinates (respectively) of the
unit directional vectors of the 𝑒†𝑖𝑛𝑡 internal edges of the form diagram
(equivalent to the unit normal vectors of the 𝑓𝑖𝑛𝑡 internal faces of the
force diagram). For each face 𝑓 † in the form diagram, let 𝐏 be a
𝑖 𝑖

Computer-Aided Design 166 (2024) 103620Y. Lu et al.

w

s

c

𝐀

Fig. 4. Closing equations are written based on the local coordinate system aligned
ith each face 𝑓 †

𝑖 . (a) Two internal edges 𝑒𝑖, 𝑒𝑗 , and all connected faces 𝑓𝑘 in a force
diagram. (b) The corresponding internal face 𝑓 †

𝑖 , 𝑓 †
𝑗 , and the surrounding edges 𝑒†𝑘 in

the form diagram. The closed face 𝑓 †
𝑖 or 𝑓 †

𝑗 means that the corresponding edge vectors
add up to a zero vector.

[𝑓𝑖𝑛𝑡 ×𝑓𝑖𝑛𝑡] (or [𝑒†𝑖𝑛𝑡 × 𝑒†𝑖𝑛𝑡]) diagonal matrix that describes the edge-face
connectivity for a face 𝑓 †

𝑖 , and its diagonal entries are defined as

𝐏𝑗,𝑗 =

⎧

⎪

⎨

⎪

⎩

+1 if edge 𝑒†𝑗 is an edge of face 𝑓 †
𝑖

−1 if the opposite of edge 𝑒†𝑗 is an edge of face 𝑓 †
𝑖 .

0 otherwise.

Then, a local coordinate system of 𝑓 †
𝑖 can be constructed by taking

its center as the local origin and its normal vector as the local 𝑧-
direction (Fig. 4). This is followed by transforming the unit directional
vectors of the 𝑒†𝑖𝑛𝑡 edges in the form diagram to the local coordinate
ystem. Let 𝐧′𝑥𝑖, 𝐧

′
𝑦𝑖

be the [𝑒†𝑖𝑛𝑡×1] vectors whose entries are the 𝑥- and
𝑦-coordinates (respectively) of the transformed unit directional vectors
in the local coordinate system of face 𝑓 †

𝑖 . The two closing equations
can be written as

(𝐏𝑖𝐧′𝑥𝑖)
⊺ = 0 (𝐏𝑖𝐧′𝑦𝑖)

⊺ = 0. (4)

Therefore, for all 𝑓 † faces, the simplified [2𝑓 †
𝑖𝑛𝑡×𝑒

†
𝑖𝑛𝑡] (or [2𝑒𝑖𝑛𝑡×𝑓𝑖𝑛𝑡])

losing matrix 𝐀 can be rewritten as

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⋮
(𝐏𝑖𝐧′𝑥𝑖)

⊺

(𝐏𝑖𝐧′𝑦𝑖)
⊺

(𝐏𝑖+1𝐧′𝑥(𝑖+1))
⊺

(𝐏𝑖+1𝐧′𝑦(𝑖+1))
⊺

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

. (5)
5

⎝ ⋮ ⎠
2.2. Additional linear equations for edge constraints

Edge constraints set target lengths for the internal edges in the form
diagram, and each constrained edge requires one additional constraint
equation. For example, if the 𝑖th internal edge 𝑒†𝑖 is constrained to a
target length 𝑙, its constraint equation may be written as

𝐛⊺𝑖 𝐪 = 𝑙 (6)

where 𝐛𝑖 is the [𝑓𝑖𝑛𝑡×1] column vector with all entries zero (0) except at
the index of 𝑒†𝑖 where it is one (1). For a total number of 𝑏 constrained
edges, all 𝑏 edge constraint equations may be assembled in the matrix
form as

𝐁𝐪 = 𝐥 (7)

where the rows of the [𝑏 × 𝑓𝑖𝑛𝑡] edge constraint matrix 𝐁 are the row
vectors 𝐛⊺𝑖 , and 𝐥 is a [𝑏 × 1] column vector with the entries being the
target lengths.

2.3. Additional linear equations for vertex constraints

Vertex constraints set target locations for the vertices, and they can
be points, lines, or planes. A target point fixes all three coordinates of
the constrained vertex, while target lines and target planes allow the
vertex to move on them. Non-linear geometries like curves and curved
surfaces are not covered in this study as these geometric constraints are
difficult to represent through a linear equation system.

If there is only one constrained vertex for the form diagram, it can
be achieved simply by a translation originating from the original vertex
location to the target location, and it does not affect the lengths of the
edges. Vertex constraints have influences on the edge lengths only if
the number of constrained vertices 𝑑 is greater than one, and, in such
cases, additional vertex constraint equations are needed.

2.3.1. Points as vertex constraints
From all constraint types, point constraint is the simplest and hereby

used to start the description. The vertex constraint equations are de-
veloped based on paired constrained vertices. For a pair of vertices 𝑣†𝑖
and 𝑣†𝑗 that are constrained to points 𝐩𝑖 and 𝐩𝑗 , a path of edges that
connects them can be found using Breadth First Search algorithm. Then
the equations can be written since the edges on the path must have
compatible lengths in order to fit in between the two vertices (Fig. 5).

Let 𝐯 be the vector going from 𝐩𝑖 to 𝐩𝑗 , and let u, v, w be the 𝑥-, 𝑦-,
and 𝑧-component of 𝐯, respectively. Let 𝐐 be a [𝑓𝑖𝑛𝑡×𝑓𝑖𝑛𝑡] (or [𝑒†𝑖𝑛𝑡×𝑒

†
𝑖𝑛𝑡])

diagonal matrix, and its diagonal entries are defined as

𝐐𝑘,𝑘 =

⎧

⎪

⎨

⎪

⎩

0 if edge 𝑒†𝑘 not on the path
+1 𝑒†𝑘 on the path, its direction goes from 𝑣†𝑖 to 𝑣†𝑗
−1 𝑒†𝑘 on the path, its direction goes from 𝑣†𝑗 to 𝑣†𝑖 .

Then the three equations for this pair of constrained vertices can be
described as
(

𝐐𝐧𝑥
)⊺ 𝐪 = u

(

𝐐𝐧𝑦
)⊺ 𝐪 = v

(

𝐐𝐧𝑧
)⊺ 𝐪 = w. (8)

Note that although there could be multiple paths connecting 𝑣†𝑖 and
𝑣†𝑗 , the result does not depend on the choice of path.

When the number of constrained vertices 𝑑 is greater than 2, all rel-
ative positions can be extensively described by 𝑑−1 pairs of constrained
vertices. For the 𝑖th vertex pair, the three constraint equations can be
written as
(

𝐐𝑖𝐧𝑥
)⊺ 𝐪 = u𝑖

(

𝐐𝑖𝐧𝑦
)⊺ 𝐪 = v𝑖

(

𝐐𝑖𝐧𝑧
)⊺ 𝐪 = w𝑖, (9)

and the 3×(𝑑−1) constraint equations can be assembled in matrix form
as

𝐃𝐪 = 𝐝 (10)

Computer-Aided Design 166 (2024) 103620Y. Lu et al.
Fig. 5. The path of edges connecting a pair of constrained vertices 𝑣†𝑖 and 𝑣†𝑗 need
to have compatible lengths to fit in between. (a) The normal directions of faces 𝑓1,
𝑓2, and 𝑓3 are denoted as �̂�1, �̂�2, and �̂�3. (b) The path of vectors 𝐞†1, 𝐞†2, and 𝐞†3 that
goes from vertex 𝑣†𝑖 to 𝑣†𝑗 should add up to 𝐯, which is the vector starting from point
constraint 𝐩𝑖 to point constraint 𝐩𝑗 . Vectors 𝐞†1, 𝐞

†
2, and 𝐞†3 can be represented using �̂�1,

�̂�2, and �̂�3 respectively. A negative sign is needed if a normal direction is opposite to
the path direction.

where 𝐃 is the [3(𝑑 − 1) × 𝑓𝑖𝑛𝑡] vertex constraint matrix, written as

𝐃 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⋮
(𝐐𝑖𝐧𝑥)⊺
(𝐐𝑖𝐧𝑦)⊺
(𝐐𝑖𝐧𝑧)⊺

⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (11)

and 𝐝 is the [3(𝑑 − 1) × 1] column vector written as

𝐝 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⋮
u𝑖
v𝑖
w𝑖
⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (12)

2.3.2. Mixed constraint types of points, lines, and planes
Unlike point constraints where vertex locations are completely

fixed, a line constraint or plane constraint releases the restriction in
one or two dimensions and therefore allows it to move. The vertex
constraints equations for mixed constraint types are also based on
constrained vertex pairs 𝑣†𝑖 and 𝑣†𝑗 .

There is an assumption in this paper that one vertex of each pair,
say 𝑣†𝑖 , needs to be constrained to a point, while the constraint of 𝑣†𝑗
can be any type. That also means for 𝑑 constrained vertices, at least one
vertex of them needs to be constrained to a point. This is because when
none of the vertices has a fixed position, the difference between their
6

positions will be difficult to represent. Although this can be resolved
by setting up a reference point for one of the vertices and introducing
its coordinates as three extra variables, they still need to be manually
chosen after solving the equation system. Therefore, it is convenient
to have at least one vertex fixed from the beginning to simplify the
problem.

Fig. 6 shows form diagram examples with line constant and plane
constraint, all derived from the same force diagram illustrated in
Fig. 5a. Since target lines and planes may have 3D orientations, a local
coordinate system 𝑂′ that is aligned with the line or plane can help
reduce the number of equations needed and thus simplify the problem.
If 𝑣†𝑗 is constrained to a line, then the local coordinate system can be
constructed with the unit directional vector of the line as the local 𝑧-
axis, and any point on the line as the origin. In such case the 𝑥- and
𝑦-differences of 𝑣†𝑖 and 𝑣†𝑗 in the local coordinate system are constant
(Fig. 6a). If it is constrained to a plane, then the unit normal direction
of the plane will be used as the local 𝑧-axis, and the origin can be any
point on the plane. In this case, the 𝑧-difference of 𝑣†𝑖 and 𝑣†𝑗 in the local
coordinate system is constant (Fig. 6b). All points and vectors changed
to this local coordinate system are super-scripted with a prime symbol
(′). Let �̂�′, �̂�′, �̂�′ denote the unit directional vectors of the axes of the
local coordinate system.

In the coordinate system, the path of edges connecting 𝑣†𝑖 and 𝑣†𝑗
must still have compatible lengths. In order to have the equations in the
local system, the target location 𝐩𝑖 and the unit direction vectors of all
edges 𝑒†𝑖 need to perform a basis change. In the local coordinate system,
let 𝐯′ be the vector going from 𝐩𝑖 to any point 𝐩𝑗 on the constraint
geometry. Here the origin of the local coordinate system is used as 𝐩𝑗
for the sake of clarity; let u′, v′, w′ be the 𝑥-, 𝑦-, and 𝑧-component of
𝐯′ respectively; let 𝐧′𝑥, 𝐧′𝑦, 𝐧′𝑧 be the [𝑒†𝑖𝑛𝑡 × 1] (equivalent to [𝑓𝑖𝑛𝑡 × 1])
vectors whose entries are the 𝑥-, 𝑦-, and 𝑧-coordinates (respectively)
of the transformed unit directional vectors of the 𝑒†𝑖𝑛𝑡 internal edges of
the form diagram (equivalent to the normal vectors of the 𝑓𝑖𝑛𝑡 internal
faces of the force diagram). If 𝑣†𝑗 is constrained to a line, then only two
equations are enough to describe the constraints and they are written
as
(

𝐐𝐧′𝑥
)⊺ 𝐪 = u′

(

𝐐𝐧′𝑦
)⊺

𝐪 = v′. (13)

This is because only the local 𝑥- and 𝑦-coordinates of 𝑣†𝑗 are con-
strained, and the local 𝑧-coordinate is free to change. If 𝑣†𝑗 is constrained
to a plane, then only one equation is needed, and it can be described
as
(

𝐐𝐧′𝑧
)⊺ 𝐪 = w′. (14)

Similarly, this is because only the local 𝑧-coordinate of 𝑣†𝑗 is con-
strained, and the local 𝑥- and 𝑦-coordinates are free to change.

There is an alternative approach for developing the constraint equa-
tions for a mixed type of constraint geometries without going through
the change of coordinate system. Let 𝑣†𝑖 be a constrained vertex, and
assume that 𝑣†𝑗 is bounded to a plane 𝑃 given by the equation

𝐧𝑃 𝐩𝑗 = 𝑑𝑃 (15)

where 𝐧𝑃 denotes a normal vector of the plane and 𝐩𝑗 denotes the
coordinate vector of the vertex 𝑣†𝑗 .

Subtracting 𝐧𝑃 𝐩𝑖 from both sides of Eq. (15), the following equation
can be obtained

𝐧𝑃 (𝐩𝑗 − 𝐩𝑖) = 𝑑𝑃 − 𝐧𝑃 𝐩𝑖. (16)

The left-hand side of the equation above can be rewritten using
Eq. (8)

𝐧𝑃 (𝐐𝐍)⊺ 𝐪 = 𝑑𝑃 − 𝐧𝑃 𝐩𝑖 (17)

where the matrix 𝐐 describes a path from vertex 𝑣†𝑖 to 𝑣†𝑗 and 𝐍 is
the [𝑒†𝑖𝑛𝑡 × 3] matrix obtained by stacking the vectors 𝐧𝑥, 𝐧𝑦 and 𝐧𝑧

column-wise .

Computer-Aided Design 166 (2024) 103620Y. Lu et al.

v
c
b
a

p

c
b
b

Fig. 6. (a) When 𝑣†𝑗 is constrained to a line, the 𝑥- and 𝑦-differences of 𝑣†𝑖 and 𝑣†𝑗 in
the local coordinate system are constant. (b) When 𝑣†𝑗 is constrained to a plane, the
𝑧-difference of 𝑣†𝑖 and 𝑣†𝑗 in the local coordinate system is constant.

Therefore, a constraint that bounds a vertex to a plane provides one
additional linear equation in 𝐪. Similarly, a constraint that bounds a
ertex to a line provides two additional linear equations as the line
an be represented as the intersection of two planes; a constraint that
ounds a vertex to a point provides three additional linear equations
s the point can be represented as the intersection of three planes.

To summarize the above, for 𝑑 (𝑑 > 2) vertices constrained to 𝑝
oints, 𝑙 lines, and 𝑛 planes where 𝑑 equals the sum of 𝑝, 𝑙, and 𝑛, a

total number of 3(𝑝 − 1) + 2𝑙 + 𝑛 equations are needed to describe the
onstraints. Accordingly, the shape of the vertex constraint matrix 𝐃
ecomes [(3(𝑝 − 1) + 2𝑙 + 𝑛) × 𝑓𝑖𝑛𝑡], and that of the column vector d
ecomes [(3(𝑝 − 1) + 2𝑙 + 𝑛) × 1].
7

2.4. Constrained linear closing equations and solutions

All closing equations, edge constraint equations, and vertex con-
straint equations are assembled as a system of non-homogeneous con-
strained linear closing equations written as follows:

𝐌𝐪 = 𝐭. (18)

Here the [(2𝑒𝑖𝑛𝑡 + 𝑏+ 3(𝑝− 1) + 2𝑙 + 𝑛) × 𝑓𝑖𝑛𝑡] matrix 𝐌 is named the
constrained closing matrix, obtained by vertically stacking the closing
matrix 𝐀, the edge constraint matrix 𝐁, and the vertex constraint matrix
𝐃:

𝐌 =
⎛

⎜

⎜

⎝

𝐀
𝐁
𝐃

⎞

⎟

⎟

⎠

. (19)

The [(2𝑒𝑖𝑛𝑡 + 𝑏 + 3(𝑝 − 1) + 2𝑙 + 𝑛) × 1] column vector 𝐭 is obtained
by vertically stacking the [2𝑒𝑖𝑛𝑡 × 1] zero vector, the vector 𝐥, and the
vector 𝐝. Each solution of 𝐪 represents a set of edge lengths of the form
diagram that satisfy all closing requirements and constraints.

The form diagram may have over-constraining problems when con-
straints are incompatible with the planarity or competing with each
other. In such cases, the constrained closing equations are overdeter-
mined, and Eq. (18) has no solution. However, the least-square solution
defines the closest solution to satisfying all closing and constraint
requirements such that the Euclidean norm is minimized. Some point
constraints can be replaced with line constraints or plane constraints to
help mitigate over-constraining problems because they allow for more
flexibility in vertex locations.

2.5. The geometric degrees of freedom of the form diagram

When the constrained closing equations are underdetermined, the
solution may not be unique. In fact, in this case, the set of solutions
forms an affine subspace inside R𝑓𝑖𝑛𝑡 meaning that all solutions lie on
a linear subspace translated by some vector.

The dimension of the linear subspace indicates the aforementioned
GDoF of the form diagram. In other words, the GDoF is defined by
the number of edges 𝑚 that need to have their lengths assigned before
an exact solution can be determined. This GDoF can be calculated
according to the relationship between the numbers of independent
equations and unknowns, where the rank 𝑟 of the constrained closing
matrix 𝐌 is used:

𝑚 = 𝑓𝑖𝑛𝑡 − 𝑟. (20)

If a solution to Eq. (18) exists, the GDoF is always greater than or
equal to zero. Zero GDoF indicates that there is a unique solution for 𝐪
and the form diagram is determinate, whereas a positive GDoF means
there are infinitely many solutions.

2.6. Algebraic representation of the force diagram

A system of linear equations can also be constructed to represent the
input force diagram itself based on the closed coplanar edge vectors of
its own 𝑓 faces rather than the internal faces of its dual diagram such
that the force diagram can be designed and modified. In this case, �̂�𝑖
will be the unit direction vector of the edge 𝑒𝑖 in the force diagram, the
dimension of the closing matrix 𝐀 becomes [2𝑓 ×𝑒], and the dimension
of the constrained closing matrix 𝐌 becomes [(2𝑓+𝑏+3(𝑝−1)+2𝑙+𝑛)×𝑒].
The details are similar to the above described and hence omitted.
The solutions of this system of equations show all force diagrams that
have the same topology as well as edge and face orientations, and
they represent different force distributions for the corresponding form
diagram. This can be helpful because the force diagram can be adjusted
without breaking the reciprocity between form and force diagrams.

Related examples are presented in Section 4.2.

Computer-Aided Design 166 (2024) 103620Y. Lu et al.

b
𝐌

3

e
i
t
T

Fig. 7. The computational pipeline.
8

3. Computational implementation

The procedures described above are implemented in the 3D model-
ing environment of Rhino3D®and Grasshopper3D®as a plug-in named
PolyFrame 2 [38] that is readily available for researchers and designers
to explore. The handy data management framework of the reciprocal
diagrams is developed by Nejur and Akbarzadeh [28] based on a
winged-edge data structure (WED) proposed by Kremer et al. [39]. Ma-
trix computations are accomplished using Numpy.NET, a .NET binding
for the scientific computing library Numpy [40]. The computational
pipeline is shown in a flowchart (Fig. 7).

In general, it takes a force diagram as input and creates the algebraic
representation of either the force diagram itself or its corresponding
form diagram, up to the user’s choice. The algebraic representation
encompasses all possible solutions of edge lengths 𝐪 within the solu-
tion space. Through a second input of 𝜉, a specific solution can be
selected from the solution space. After getting a solution 𝐪 for the edge
lengths, the corresponding form diagram or a new force diagram can
be constructed. The examples in this section utilize only the algebraic
representation of form diagrams for the sake of clarity and simplicity.

3.1. Construction of the data structure

The construction of the data structure starts from a group of planar
surfaces with connecting boundary edges which represent the force
diagram. Then the vertices, edges, faces, and cells can be extracted and
the data structure can be found through the process described by Ne-
jur and Akbarzadeh [28]. As mentioned in this previous publication,
although the data structure allows self-intersecting faces and cells to
exist through later manipulation, the initial construction of the data
structure cannot accept self-intersecting surfaces, i.e. all 𝑐 cells in the
force diagram need to be convex, otherwise, the topology cannot be
defined properly. This handy data structure allows for fast queries of
topological and geometrical information from the force diagram, which
is a foundation for the following steps.

3.2. Construction of the constrained closing equations

The construction of the closing matrix 𝐀 has been explained thor-
oughly by Hablicsek et al. [29] as well as in Section 2.1. The con-
struction edge constraint matrix 𝐁 is straightforward and has also
been adequately covered in Section 2.2. The construction of vertex
constraint matrix 𝐃 needs to find a connecting path for each con-
strained vertex pair 𝑣†𝑖 and 𝑣†𝑗 in the form diagram. The Breadth-First
search (BFS) algorithm can be used for this purpose. It starts by using
one constrained vertex as the origin to perform a BFS to traverse
the network of the form diagram. During the BFS, a search tree can
be constructed with a constrained vertex being the root node, other
vertices being its descendant, and links being the connecting edges.
The constrained vertex pairs can be obtained from this search tree. For
all other constrained vertices, their connecting paths with the origin
vertex can be obtained by traversing the tree up until the root is reached
(Fig. 8). Once the paths are found, the vertex constraint matrix 𝐃 can
e written as described in Section 2.3. The constrained closing matrix

can then be obtained by Eq. (19).

.3. Solution of the constrained linear closing equations

All solutions of the non-homogeneous constrained linear closing
quation system (Eq. (18)) may be calculated using the Moore–Penrose
nverse (MPI) method [41,42] that provides a fast and interactive way
o construct a dual diagram with well-distributed edge lengths [29].
he Moore–Penrose inverse of the constrained matrix 𝐌 is denoted 𝐌+.

A solution to Eq. (18) exists only when the following identity holds

𝐌𝐌+𝐭 = 𝐭. (21)

Computer-Aided Design 166 (2024) 103620Y. Lu et al.
Fig. 8. (a) Exploded force diagram showing individual cells. (b) The adjacency graph
of the cells. (c) The BFS tree.

Moreover, all solutions of 𝐪 are given by

𝐪 = 𝐌+𝐭 + [𝐈 −𝐌+𝐌]𝜉 (22)

where 𝐈 is the [𝑓𝑖𝑛𝑡 × 𝑓𝑖𝑛𝑡] identity matrix and 𝜉 is a user-specified
[𝑓𝑖𝑛𝑡 × 1] column vector input. When 𝐌 has full column rank, which
means 𝐈 − 𝐌+𝐌 is a zero matrix, the solution 𝐪 = 𝐌+𝐭 is unique.
Otherwise, the solution 𝐪 depends on the parameter 𝜉 that users can
freely choose. In general, the 𝑖th entry of 𝜉 loosely controls the signed
length of edge 𝑒†𝑖 when it is not constrained. In fact, if 𝜉 is a solution
of Eq. (18), meaning that 𝐌𝐌+𝜉 = 𝜉, then Eq. (22) yields

𝐪 = 𝐌+𝐭 + [𝐈 −𝐌+𝐌]𝜉 = 𝐌+𝐭 + 𝜉 −𝐌+𝐭 = 𝜉, (23)

showing that if 𝜉 is the input parameter, then the output of the
MPI method agrees with 𝜉. In other words, the MPI method returns
the solution 𝜉. On the contrary, if edge 𝑒†𝑖 has its length constrained,
the 𝑖th entry of 𝜉 will have no effect on the solution.

The most computationally intensive task is computing 𝐌+. How-
ever, once computed and stored, assigning 𝜉 and getting 𝐪 is extremely
fast, allowing for the efficient generation of a wide range of solutions.
It is noted in the previous research paper [29] that the accumulation
of numerical error may lead to an incorrect result. This can be resolved
by cutting off small singular values when calculating 𝐌+.

3.4. Construction of the form diagram

After getting a solution for 𝐪 which contains signed lengths for all
𝑒†𝑖𝑛𝑡 edges, the vertex positions can be calculated through methods such
as the algebraic approach and graph-search approach [29] for the con-
struction of the form diagram. Once again, the BFS algorithm is used. It
traverses from a vertex 𝑣†𝑖 that has known coordinates, then gradually
visits the adjacent vertices and calculates their positions based on the
lengths of the connecting edges until all vertices are visited (Fig. 9). If
the form diagram has constrained vertices, the starting vertex 𝑣†𝑖 can be
chosen from them. Otherwise, if no vertex is constrained, meaning that
they can be constructed anywhere in the 3D space, a starting vertex
needs to be specified and its position needs to be assigned. Finally, the
tension or compression state of the 𝑒† edges can be determined based
on the procedure described by Hablicsek et al. [29].
9

Fig. 9. The construction of the form diagram once a solution 𝐪 is obtained.

3.5. Detection of over-constraining problems

As mentioned in Section 2.4, the form diagram may be over-
constrained if the vertex and edge constraints are incompatible with
the planarity or competing with each other. The system of equations
allows the over-constraining problems to be explicitly detected.

When a form diagram is over-constrained, Eq. (21) does not hold,
meaning that the equation system is overdetermined and there will be
no solution. This serves as a criterion to assess whether a form diagram
is over-constrained. However, when 𝜉 is a zero vector, Eq. (22) gives a
minimum norm solution (namely 𝐌+𝐭) that is the closest to satisfying
all constraints, meaning that

‖𝐌𝐪 − 𝐭‖ ≥ ‖𝐌𝐌+𝐭 − 𝐭‖ (24)

holds for any possible vector 𝐪 where ‖.‖ denotes the Euclidean norm.
Although this minimum norm solution of edge lengths can be used to
construct a form diagram using the process described in Section 3.4,
the resulting form diagram is usually incorrect due to nonplanarity
and edge angle deviations. Fig. 10a shows the minimum norm solution
of an over-constrained form diagram generated from the same force
diagram as Fig. 8a. Vertices 𝑣†1, 𝑣

†
6, and 𝑣†9 are constrained to points 𝐩1,

𝐩 , and 𝐩 respectively, where the three vertex constraints cannot be
2 3

Computer-Aided Design 166 (2024) 103620Y. Lu et al.

d
p
a

s
o

u
s
c
c
s
c

3

p

Fig. 10. The problem of over-constraining can be mitigated or resolved by using more
forgiving constraint types such as lines and planes. Over-constrained form diagrams
usually have angle deviations on some edges as shown in (a) and (b). (a) The
minimum norm solution of an over-constrained form diagram with vertices 𝑣†1, 𝑣†6,
and 𝑣†9 constrained to points 𝐩1, 𝐩2, and 𝐩3 respectively. The positions of 𝑣†6 and 𝑣†9
eviate from the target points. (b) The angle deviations are reduced after replacing
oint constraint 𝐩3 with a line constraint. (c) The over-constraining issue is resolved
fter replacing point constraint 𝐩3 with a plane constraint.

imultaneously satisfied. The non-zero angle deviations are displayed
n each respective edge.

The problem of over-constraining may be mitigated or resolved by
sing more forgiving constraint types such as lines and planes. Fig. 10b
hows the minimum norm solution of the form diagram with point
onstraint 𝐩3 replaced with a line constraint. This form is less over-
onstrained as can be seen from the reduced angle deviation. Fig. 10c
hows that the over-constraining issue is resolved by replacing the point
onstraint 𝐩3 with a plane constraint.

.6. Comparison with the iterative method

Several benchmark models are tested to compare the algebraic ap-
roach with the iterative approach described by Nejur and Akbarzadeh
10
[28] (Fig. 11). The algebraic approach outperforms the iterative ap-
proach in terms of both precision and speed. The iterative approach
needs a maximum allowed deviation angle for perpendicularity as the
stopping criteria, and the smaller the angle is the longer it will take.
In most cases, the result cannot reach zero angle deviation. For the
algebraic approach, the results without over-constraining are precise
and have almost zero angle deviation due to the nature of close-form
solutions. For over-constraining problems, the algebraic method can
explicitly tell whether a form or force diagram is over-constrained as
described in Section 3.5, whereas the iterative methods cannot. In terms
of speed, different constraint conditions are less likely to affect the
runtime of the algebraic approach, whereas the runtime of the iterative
approach heavily depends on how different the goal is from the initial
state. In all benchmark models, the algebraic approach is approximately
tens to hundreds of times faster than the iterative approach that uses
1 degree as the maximum allowed deviation. Besides, the algebraic
method works diagrams with concave polyhedrons, which is difficult
to achieve using the iterative method.

3.7. Computation complexity

Another performance test is also presented to show the computa-
tion complexity of the algebraic implementation (Fig. 12). The tested
models are 3DGS approximations of Schwarz P minimal surface in
different resolutions [25]. Despite the exponential growth in runtime,
the algorithm can efficiently process complex geometries within a
relatively short timeframe. All tests mentioned above were performed
single-threaded on a laptop with a Xeon E3-1505M CPU and 32 GB of
RAM.

4. Application

The previous section has shown that the enhanced algebraic 3DGS
equipped with edge and vertex constraints offers comprehensive and
flexible control while maintaining a high computation efficiency in
exploring the solution space. Those capabilities are further explored
through various case studies in this section. As mentioned earlier, the
algebraic representation can be established for both form and force
diagrams. Thus, the case studies are classified into those two categories:
the generation of various form diagrams and the manipulation of force
diagrams.

4.1. Generation of various form diagrams

4.1.1. Convenient form control based on site conditions
The algebraic approach allows the form to be generated and easily

controlled with desired constraint geometries, which is convenient
for accommodating real-world site conditions. Fig. 13 shows a simple
design scenario where a bridge is needed above a 10 m-wide river. In
order to design a funicular bridge that fits between the banks, lines and
points can be used as constraint geometries to constrain the four corners
of the bridge. For different site conditions, the bridge geometry can
be easily adjusted by moving the constraint points of the constrained
vertices.

4.1.2. Intuitive exploration of the solution space
Due to the geometric degrees of freedom (GDoF), it is possible to

generate an infinitude of drastically different form diagrams from the
same force diagram. This solution space of the form diagram can be
explored by specifying a different input parameter 𝜉. Although this is
theoretically doable, modifying 𝜉 can be tedious and counter-intuitive.
This is because 𝜉 is a [𝑓𝑖𝑛𝑡×1] vector, and its dimension can be large for
complex form diagrams. Moreover, it is difficult to directly perceive the
relationship between 𝜉 and the resulting form diagram. Edge and vertex
constraints can provide a different approach for intuitively exploring

the solution space. For example, Fig. 14 illustrates different bridge

Computer-Aided Design 166 (2024) 103620

11

Y. Lu et al.

Fig. 11. A comparative performance study between the algebraic approach and the iterative approach.

Computer-Aided Design 166 (2024) 103620

12

Y. Lu et al.

Fig. 12. Runtime of 3DGS approximations of Schwarz P minimal surface in different resolutions.

Computer-Aided Design 166 (2024) 103620Y. Lu et al.
Fig. 13. Simple bridge designs with constraints set up in accordance with different
site conditions.

geometries designed for the same site. Those different geometries have
different forms and states of tension and compression. This is achieved
by precisely modifying the height and end positions of the bridge.
Fig. 15 shows a force diagram that is shared by a family of funicular
shells depicted in Fig. 16, whose four corner vertices 𝑣†1, 𝑣

†
2, 𝑣

†
3, and 𝑣†4

are constrained to different points. Changing their target point locations
results in an array of forms, ranging from compression or tension only
to tension–compression combined, from synclastic to anticlastic.

4.1.3. Form-finding for various loading scenarios
A force diagram is only able to represent the equilibrium of a single

loading scenario, and the corresponding form diagram will only be in
equilibrium under that specific situation. In practice, the initial force
diagram usually represents the combination of structural self-weight
and the primary static loads. However, dynamic loads must also be
taken into consideration if their magnitudes are comparable to the
dead loads. Fig. 17 shows a 3D bridge design example that accounts
for vertical live loads by using multiple force diagrams to indicate
different live load situations. All force diagrams have the same topology
but different areas on the top faces. In Fig. 17a, each top face of
𝛤1 represents the tributary dead load of the structure with an area
of |𝐟 |, while 𝛤2 to 𝛤8 have several enlarged top faces. Each enlarged
face has an additional area of |2𝐟 |, indicating the live load at the
corresponding vertex. For each force diagram, a corresponding form
diagram is generated and constrained to the same span, load position,
and height (Fig. 17b). By overlaying those form diagrams, a new bridge
geometry can be obtained, which contains load paths for all live load
cases (Fig. 17c). While this new bridge geometry may alter the static
load represented by 𝛤1, this preliminary exploration provides insights
for further design developments.

4.1.4. Auxetic structures
Auxetic metamaterials show unusual reaction behaviors under uni-

axial compression or tension forces. They contract perpendicular to
the load direction under an applied compressive force and expand
under tension. This behavior, namely negative Poisson’s ratio, heav-
ily depends on the internal concave cellular geometries [44,45]. A
previous research project has demonstrated that the algebraic formu-
lation of graphic statics is a suitable tool for systematically designing
two-dimensional auxetic metamaterials with concave geometric ar-
rangements [46]. This may also be extended to three dimensions.
13
Fig. 14. A family of bridge designs with different geometries and states of tension and
compression. (a) The shared force diagram. (b) A compression-only geometry. (c) A
tension-only geometry. (d)–(h) Tension–compression combined geometries.

Fig. 15. The exploded force diagram shared by the family of funicular shells.

Algebraic 3DGS is capable of creating those 3D geometries with con-
cave cells in two different ways. First, it can start from a convex

Computer-Aided Design 166 (2024) 103620Y. Lu et al.
Fig. 16. A family of funicular shells generated based on the same force diagram, and their four corner vertices 𝑣†1, 𝑣
†
2, 𝑣

†
3, and 𝑣†4 are constrained to different points.
configuration and modify the strut lengths based on the GDoF to turn
certain cells into a concave configuration (Fig. 18a–e). Alternatively,
the concave configuration can be generated directly from a force dia-
gram with concave cells (Fig. 18f–j). The auxetic behaviors of the two
structures are then verified using the finite element method (FEM).
The specimens have a footprint of 50 mm by 50 mm, with all edges
materialized as 1.2 mm diameter struts using a linear elastic material.
The bottom vertices are fixed in 𝑧-direction, and a total vertical force of
10 kN is distributed to all top vertices. The simulation results are shown
in Fig. 18e and 18j, which indicate a negative Poisson’s ratio. These
approaches have the potential to significantly accelerate the develop-
ment and exploration of various auxetic metamaterials. It provides a
powerful tool for the science and engineering communities to further
investigate and develop new auxetic metamaterials, and explore their
potential applications in areas such as biomedicine, aerospace, and
advanced manufacturing.
14
4.2. Manipulation of force diagrams

4.2.1. Removal of unwanted external forces
One additional advantage of having control over edge lengths is the

ability to manipulate face areas, this is especially useful for force dia-
gram manipulations as the face areas directly relate to force magnitudes
in the form diagram. A structural form found using 3DGS sometimes has
undesired external forces as they are difficult to provide in reality. By
constraining their corresponding faces to zero area in the force diagram,
such forces can be removed and a new internal force distribution can
be obtained. Compared to the existing approach of constraining face
areas through quadratic formulations [35], changing face areas through
edge lengths is more intuitive and computationally efficient. Fig. 19
illustrates examples from two built design projects [19,22] where the
lateral external forces were difficult to provide in the actual construc-
tion. In Fig. 19b where the external side faces of the force diagram

Computer-Aided Design 166 (2024) 103620Y. Lu et al.
Fig. 17. A 3D bridge design example that accounts for vertical live loads by using multiple force diagrams to indicate different situations of live loads. (a) Eight force diagrams
that show different live load situations. 𝛤1 represents the dead loads of the structure, each top face has an area of |𝐟 | indicating the tributary dead load on the top vertex. 𝛤2 to
𝛤8 have several enlarged top faces, representing vertices with applied live loads. (b) The four bottom-corner vertices of each form diagram are constrained to two line constraints
with 100 m spacing, and the top vertices with external loads are constrained to equally-spaced plane constraints. The longest vertical edge of each form diagram is constrained
to 20 m. (c) A final bridge design is obtained by overlaying those form diagrams.
are rectangles, their areas can be reduced to zero by constraining the
length of edge 𝑒1 to zero. In the more complex example shown in
Fig. 19e where the external side faces are trapezoids, their areas are
turned to zero through self-intersection. The area calculation for self-
intersecting faces has been exhaustively explained by Akbarzadeh and
Hablicsek [35] and is captured in Fig. 20. In the new equilibrium states
of both examples, some edges are turned into tension, which can be
materialized and treated differently from the compression members.
The main limitation of area control through edge lengths is that a face
with 𝑛 edges requires 𝑛−2 edge length constraints to determine its area,
and this can be tedious when 𝑛 is large.

4.2.2. Self-stressed structure
A force diagram may have all its external face areas reduced to

zero while having non-zero internal face areas (Fig. 21). In this case,
the corresponding form diagram represents a self-stressed structure,
15
because the edges have forces without any external load. This can
be used to detect the static indeterminacy in a form diagram since
statically determinate structures cannot have any state of self-stress.
However, when the internal faces cannot keep a non-zero area, it does
not mean that the form diagram is statically determinate. This is due to
the polyhedral nature of the force diagram, which only shows a subset
of all possible equilibrium states.

5. Discussion and conclusion

This paper introduces an improved algebraic formulation for 3DGS
equipped with edge and vertex constraints, which enables the precise
manipulation of edge lengths and vertex locations of the recipro-
cal diagrams while maintaining the computation speed and flexibil-
ity of exploring the solution space. A software tool that implements
this enhanced formulation within the environment of Rhino3D®and

Computer-Aided Design 166 (2024) 103620

16

Y. Lu et al.

Fig. 18. Two ways of generating structures with auxetic behavior using algebraic 3DGS. (a)–(e) A form diagram is turned from a convex configuration to a concave configuration
through edge length manipulation. (f)–(j) a form diagram with concave configuration directly generated from a force diagram with concave cells. (a) and (f) use Minkowski
sum [43] to show the transition between force and form diagrams and to illustrate the reciprocity. (e) and (j) show analysis results using FEM that indicate negative Poisson’s
ratios.

Computer-Aided Design 166 (2024) 103620Y. Lu et al.
Fig. 19. Two built design projects are used as examples to show the removal of lateral external forces. Those forces are removed by constraining the corresponding faces to zero
area in the force diagram.
Fig. 20. A series of faces showing how the face areas are calculated. If any part of a
face has a reversed normal based on the right-hand rule, its area will be considered
negative.

Grasshopper3D®has been released and is readily available for re-
searchers, designers, and educators to exploit. Furthermore, the poten-
tial applications of this tool were demonstrated through various case
studies that showcase the flexibility and versatility of this approach.
17
There are numerous potential applications of this enhanced formu-
lation and software tool. In addition to the demonstrated case studies,
this approach can also be applied to teaching because its efficient
computation enables interactivity and allows users to interact with
the inputs and see outputs instantaneously. Furthermore, this algebraic
formulation can be transferred to web platforms to provide a widely
accessible educational tool for 3DGS.

This proposed formulation and its implementation can be further
improved to add more convenient features and increase the ease of
use. One potential improvement is to incorporate linear programming
approaches to enable more flexible constraint conditions. At present,
the edge constraints are set as fixed numbers, which can result in over-
constraining problems when too many edges have target lengths. By
extending the target length from a single number to a range, linear
programming can greatly reduce the chance of over-constraining. Lin-
ear programming can also help find compression or tension-only forms,
which are difficult to achieve for complex geometries under the alge-
braic framework. Moreover, in advanced use cases, linear programming
can be employed for load-path optimizations [47].

Another area where further improvement can be made is in the com-
putation speed of the software tool. To achieve this, high-performance
numerical packages can be leveraged to enhance the efficiency of the
computation process. The developer notes that the use of Numpy.NET is
approximately four times slower than using Numpy directly in Python,
suggesting significant potential for improvement. By utilizing better
numerical packages, the computation speed can be boosted, making it
more feasible for larger and more complex projects.

Overall, the proposed formulation and its implementation offer a
promising algebraic framework for efficient form-finding using 3DGS,
with significant potential for further development and refinement. The
incorporation of linear programming approaches and high-performance
numerical packages can lead to a more user-friendly and efficient tool,
which can facilitate the exploration of a wider range of structural
solutions for a variety of design challenges. With its versatility and
accessibility, this proposed formulation can be useful not only for pro-
fessional engineers and architects but also for students and educators
seeking to explore the possibilities of 3DGS.

Computer-Aided Design 166 (2024) 103620Y. Lu et al.
Fig. 21. Some force diagrams may allow all external faces constrained to zero area while keeping internal face areas, and the corresponding form diagrams will represent a
self-stressed structure. Some faces of the force diagram are colored in red because their area is flipped to negative.
Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Masoud Akbarzadeh reports financial support was provided by National
Science Foundation.

Data availability

Data will be made available on request.

Acknowledgments

This research is funded by the National Science Foundation CAREER
Award (NSF CAREER-CMMI 1944691) and the National Science Foun-
dation Future Eco Manufacturing Research Grant (NSF FMRG-CMMI
2037097) to Masoud Akbarzadeh.

References

[1] Rankine WJM. A manual of applied mechanics. London: Griffin; 1858.
[2] Rankine WJM. Principle of the equilibrium of polyhedral frames. Philos Mag Ser

4 1864;27(180):92.
[3] Maxwell JC. On reciprocal figures and diagrams of forces. Philos Mag Ser 4

1864;27(182):250–61.
[4] Culmann K. Die graphische statik. Zürich: Verlag Meyer und Zeller; 1864.
[5] Bow RH. Economics of construction in relation to framed structures. London:

Spon; 1873.
[6] Cremona L. Graphical statics: Two treatises on the graphical calculus and

reciprocal figures in graphical statics. Translated By Thomas Hudson Beare.
Oxford: Clarendon Press; 1890.

[7] Wolfe WS. Graphical analysis: A text book on graphic statics. New York:
McGraw-Hill Book Co. Inc.; 1921.

[8] Billington DP. Robert Maillart’s bridges: The art of engineering. Princeton
University Press: N9ZAYMXBmnMC; 1979, Google-Books-ID.

[9] Maxwell JC. On reciprocal figures, frames and diagrams of forces. Trans R Soc
Edinburgh 1870;26(1):1–40.

[10] D’Acunto P, Jasienski J-P, Ohlbrock PO, Fivet C, Schwartz J, Zastavni D. Vector-
based 3D graphic statics: A framework for the design of spatial structures based
on the relation between form and forces. Int J Solids Struct 2019;167:58–70.

[11] Akbarzadeh M. 3D graphic statics using reciprocal polyhedral diagrams [Ph.D.
thesis], Zurich, Switzerland: ETH Zurich; 2016.

[12] Lee J. Computational design framework for 3D graphic statics (Ph.D. thesis),
ETH Zurich; 2018, Accepted: 2019-03-14T06:19:28Z.
18
[13] Konstantatou M, D’Acunto P, McRobie A. Polarities in structural analysis and
design: n-dimensional graphic statics and structural transformations. Int J Solids
Struct 2018;152–153:272–93.

[14] Lu Y, Cregan M, Chhadeh P, Seyedahmadian A, Bolhassani M, Schneider J, et al.
All glass, compression-dominant polyhedral bridge prototype: form-finding and
fabrication. In: Inspiring the next generation: Proceedings of the 7th international
conference on spatial structures and the annual symposium of the IASS. Surrey,
UK; 2021, p. 326–36.

[15] Akbari M, Lu Y, Akbarzadeh M. From design to the fabrication of shellular fu-
nicular structures. In: 2021 association for computer aided design in architecture
annual conference. Association for computer aided design in architecture annual
conference, ACADIA 2021, Virtual, Online: ACADIA; 2021.

[16] Lu Y, Seyedahmadian A, Chhadeh PA, Cregan M, Bolhassani M, Schneider J, et al.
Funicular glass bridge prototype: Design optimization, fabrication, and assembly
challenges. Glass Struct Eng 2022;7(2):319–30.

[17] Chai H, Bolhassani M, Akbarzadeh M. Structural form-finding of multi-span
undulating funicular beam structure. In: Proceedings of IASS 2022 symposium
affiliated with APCS 2022 conference. Beijing, China; 2022.

[18] Lu Y, Alsalem T, Akbarzadeh M. A method for designing multi-layer sheet-based
lightweight funicular structures. J Int Assoc Shell Spat Struct 2022;63(4):252–62.

[19] Bolhassani M, Akbarzadeh M, Mahnia M, Taherian R. On structural behavior of
a funicular concrete polyhedral frame designed by 3D graphic statics. Structures
2018;14:56–68.

[20] Heisel F, Lee J, Schlesier K, Rippmann M, Saeidi N, Javadian A, et al. Design,
cultivation and application of load-bearing mycelium components. Int J Sustain
Energy Dev 2018;6(1):296–303.

[21] Bhooshan V, Louth H, Bieling L, Bhooshan S. Spatial developable meshes. In:
Gengnagel C, Baverel O, Burry J, Ramsgaard Thomsen M, Weinzierl S, editors.
Impact: Design with all senses. Cham: Springer International Publishing; 2020,
p. 45–58.

[22] Akbarzadeh MG. Saltatur. In: ACADIA 2020: Distributed proximities / Volume
II: Projects [Proceedings of the 40th annual conference of the association of
computer aided design in architecture (ACADIA) ISBN 978-0-578-95253-6].
Online and Global. 24-30 October 2020. Edited By M. Yablonina, a. Marcus,
S. Doyle, M. Del Campo, V. Ago, B. Slocum. 108-113.. CUMINCAD; 2020, URL
http://papers.cumincad.org/cgi-bin/works/paper/acadia20_108p.

[23] Liu Y, Lu Y, Akbarzadeh M. Kerf bending and zipper in spatial timber tectonics:
A polyhedral timber space frame system manufacturable by 3-axis CNC milling
machine. In: 2021 Association for computer aided design in architecture annual
conference, ACADIA 2021, November 3, 2021 - November 6, 2021. Association
for computer aided design in architecture annual conference, ACADIA 2021,
Virtual, Online: ACADIA; 2021.

[24] Naboni R, Zomparelli A. Complex modelling automation for 3D polyhedral
structures built with additive formwork manufacturing. Archit, Struct Constr
2023.

[25] Akbari M, Mirabolghasemi A, Bolhassani M, Akbarzadeh A, Akbarzadeh M.
Strut-based cellular to shellular funicular materials. Adv Funct Mater
2022;32(14):2109725.

[26] Lee J, Mele TV, Block P. Disjointed force polyhedra. Comput Aided Des
2018;99:11–28.

http://refhub.elsevier.com/S0010-4485(23)00152-5/sb1
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb2
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb2
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb2
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb3
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb3
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb3
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb4
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb5
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb5
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb5
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb6
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb6
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb6
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb6
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb6
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb7
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb7
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb7
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb8
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb8
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb8
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb9
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb9
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb9
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb10
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb10
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb10
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb10
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb10
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb11
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb11
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb11
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb12
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb12
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb12
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb13
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb13
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb13
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb13
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb13
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb14
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb14
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb14
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb14
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb14
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb14
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb14
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb14
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb14
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb15
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb15
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb15
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb15
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb15
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb15
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb15
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb16
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb16
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb16
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb16
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb16
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb17
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb17
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb17
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb17
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb17
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb18
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb18
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb18
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb19
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb19
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb19
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb19
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb19
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb20
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb20
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb20
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb20
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb20
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb21
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb21
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb21
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb21
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb21
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb21
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb21
http://papers.cumincad.org/cgi-bin/works/paper/acadia20_108p
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb23
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb23
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb23
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb23
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb23
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb23
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb23
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb23
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb23
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb23
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb23
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb24
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb24
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb24
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb24
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb24
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb25
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb25
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb25
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb25
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb25
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb26
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb26
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb26

Computer-Aided Design 166 (2024) 103620Y. Lu et al.
[27] PSL. PolyFrame. 2018, URL https://www.food4rhino.com/app/polyframe.
[28] Nejur A, Akbarzadeh M. PolyFrame, efficient computation for 3D graphic statics.

Comput Aided Des 2021;134:103003.
[29] Hablicsek M, Akbarzadeh M, Guo Y. Algebraic 3D graphic statics: Reciprocal

constructions. Comput Aided Des 2019;108:30–41.
[30] Akbarzadeh M, Hablicsek M. Geometric degrees of freedom and non-conventional

spatial structural forms. In: Impact: Design with all senses, design modelling
symposium. Berlin, Germany; 2020.

[31] Micheletti A. On generalized reciprocal diagrams for self-stressed frameworks.
Int J Space Struct 2008;23(3):153–66.

[32] Van Mele T, Block P. Algebraic graph statics. Comput Aided Des 2014;53:104–16.
[33] Alic V, Åkesson D. Bi-directional algebraic graphic statics. Comput Aided Des

2017;93:26–37.
[34] Akbarzadeh M, Hablicsek M. Geometric degrees of freedom and non-conventional

spatial structural forms. In: Gengnagel C, Baverel O, Burry J, Ramsgaard Thom-
sen M, Weinzierl S, editors. Impact: Design with all senses. Cham: Springer
International Publishing; 2020, p. 3–17.

[35] Akbarzadeh M, Hablicsek M. Algebraic 3D graphic statics: Constrained areas.
Comput Aided Des 2021;141:103068.

[36] Akbarzadeh M, Van Mele T, Block P. On the equilibrium of funicular poly-
hedral frames and convex polyhedral force diagrams. Comput Aided Des
2015;63:118–28.

[37] Akbarzadeh M, Hablicsek M, Guo Y. Developing algebraic constraints for
reciprocal polyhedral diagrams of 3D graphic statics. In: Mueller C, Adri-
aenssens S, editors. Proceedings of the international association for shell and
spatial structures (IASS) symposium: Creativity in structural design. MIT, Boston,
US; 2018.

[38] PS. PolyFrame 2. 2023, URL https://www.food4rhino.com/app/polyframe-2.
[39] Kremer M, Bommes D, Kobbelt L. OpenVolumeMesh – A versatile index-based

data structure for 3D polytopal complexes. In: Jiao X, Weill J-C, editors.
Proceedings of the 21st international meshing roundtable. Berlin, Heidelberg:
Springer; 2013, p. 531–48.

[40] Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D,
et al. Array programming with NumPy. Nature 2020;585(7825):357–62.

[41] Moore EH. On the reciprocal of the general algebraic matrix. Bull Amer Math
Soc 1920;26(9):385–96.

[42] Penrose R. A generalized inverse for matrices. Math Proc Camb Phil Soc
1955;51(3):406–13.

[43] McRobie A. Maxwell and rankine reciprocal diagrams via Minkowski sums for
two-dimensional and three-dimensional trusses under load. Int J Space Struct
2016;31(2–4):203–16.

[44] Reid DR, Pashine N, Wozniak JM, Jaeger HM, Liu AJ, Nagel SR, et
al. Auxetic metamaterials from disordered networks. Proc Natl Acad Sci
2018;115(7):E1384–90.
19
[45] R Reid D, Pashine N, S Bowen A, R Nagel S, Pablo JJd. Ideal isotropic auxetic
networks from random networks. Soft Matter 2019;15(40):8084–91.

[46] Hablicsek M, Akbarzadeh M. Structural form-finding of auxetic materials us-
ing graphic statics. In: Proceedings of IASS symposium and spatial structures
conference 2020/21, inspiring the next generation. Guildford, UK; 2021.

[47] Beghini LL, Carrion J, Beghini A, Mazurek A, Baker WF. Structural optimization
using graphic statics. Struct Multidiscip Optim 2013;49(3):351–66.

Yao Lu is currently a Ph.D. Candidate at the Polyhedral
Structures Laboratory, Weitzman School of Design, Univer-
sity of Pennsylvania. He has a Master of Science in Matter
Design Computation from Cornell University, a Master of
Architecture and a Bachelor in Engineering from Tongji
University.

Márton Hablicsek is currently a tenured assistant professor
of mathematics at Leiden University in the Netherlands,
and a research associate at PSL. He was a postdoctoral
fellow at the University of Copenhagen and the Centre of
Symmetry and Deformation and the University of Pennsyl-
vania. He holds a Ph.D. in Mathematics from the University
of Wisconsin-Madison and his research lies in algebraic
geometry and its applications.

Masoud Akbarzadeh is an Assistant Professor of Ar-
chitecture at Weitzman School of Design, University of
Pennsylvania. He is also the director of Polyhedral Struc-
tures Laboratory (PSL), which focuses on Structures and
Advanced Technologies. He holds a D.Sc. from the Institute
of Technology in Architecture, ETH Zurich, and a Master of
Science in Architecture Studies and a Master of Architecture
from MIT.

https://www.food4rhino.com/app/polyframe
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb28
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb28
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb28
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb29
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb29
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb29
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb30
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb30
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb30
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb30
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb30
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb31
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb31
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb31
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb32
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb33
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb33
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb33
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb34
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb34
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb34
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb34
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb34
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb34
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb34
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb35
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb35
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb35
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb36
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb36
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb36
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb36
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb36
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb37
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb37
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb37
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb37
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb37
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb37
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb37
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb37
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb37
https://www.food4rhino.com/app/polyframe-2
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb39
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb39
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb39
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb39
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb39
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb39
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb39
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb40
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb40
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb40
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb41
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb41
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb41
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb42
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb42
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb42
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb43
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb43
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb43
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb43
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb43
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb44
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb44
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb44
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb44
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb44
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb45
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb45
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb45
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb46
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb46
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb46
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb46
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb46
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb47
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb47
http://refhub.elsevier.com/S0010-4485(23)00152-5/sb47

	Algebraic 3D Graphic Statics with Edge and Vertex Constraints: A Comprehensive Approach to Extend the Solution Space for Polyhedral Form-Finding
	Introduction
	Related work
	Algebraic 2D graphic statics
	Algebraic 3D graphic statics

	Problem statement and objectives
	Paper outline
	Nomenclatures

	Method
	Linear closing equations for the form diagram
	Closing matrix with reduced size

	Additional linear equations for edge constraints
	Additional linear equations for vertex constraints
	Points as vertex constraints
	Mixed constraint types of points, lines, and planes

	Constrained linear closing equations and solutions
	The geometric degrees of freedom of the form diagram
	Algebraic representation of the force diagram

	Computational implementation
	Construction of the data structure
	Construction of the constrained closing equations
	Solution of the constrained linear closing equations
	Construction of the form diagram
	Detection of over-constraining problems
	Comparison with the iterative method
	Computation complexity

	Application
	Generation of various form diagrams
	Convenient form control based on site conditions
	Intuitive exploration of the solution space
	Form-finding for various loading scenarios
	Auxetic structures

	Manipulation of force diagrams
	Removal of unwanted external forces
	Self-stressed structure

	Discussion and conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

