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A B S T R A C T

Shell-based cellular (shellular) funicular structures (SFSs) are single-layer 2-manifold efficient structures with
anticlastic curvature, designed in the context of graphic statics. This research proposes a comprehensive
methodology for designing these efficient structures in the context of graphic statics. Due to the significant
challenges in the process of designing these structures, and the ease of using 3D graphic statics in designing cel-
lular funicular structures, this article proposes a general technique to translate any cellular funicular structure
(CFS) to a shellular version (SFS). To address this transition, this study presents an integrated methodology
coupled with a computational algorithm. This technique proposes a new tetrahedralization method using the
reciprocal relationship between the force and the form diagrams, generalizing the translation technique. As a
result, the research explores a spectrum of shellular funicular structures, under pure compression or tension
states. Diverse design techniques are introduced, enabling the creation and manipulation of these structures
through their three-dimensional spatial connectivity graphs, termed ‘‘labyrinths’’. A comparison between the
structural performance of cellular and shellular funicular structures with similar volume density is performed
displaying that for the same boundary condition, a shellular specimen can tolerate forces three times more
than a cellular structure. To emphasize the practical utility of this design methodology, the study delves into
its application at micro and meso scales. Specifically, it showcases the utilization of the shellular technique in
the design of the midsole structure of a sneaker. This innovative approach draws inspiration from the pressure
patterns exerted by the soles of the feet, emphasizing the adaptability and versatility of the proposed design
technique. The results display that shellular funicular structures, with their lightweight and efficient nature,
demonstrate superior structural capacity compared to their cellular counterparts and are applicable across
micro, meso, and macro scales.
1. Introduction

1.1. Shellular structures

Shell structures are thin, curved plate structures that transfer forces
through compression, tension, and shear stresses that act within the
surface plane. These structures have numerous applications in sci-
ence, design, and construction [1–3]. As a category of cellular struc-
tures, shell cellular (shellular) structures consist of continuous, smooth-
curved shells. The geometry of these structures involves a surface with
minimal material, known as a minimal surface [4]. The geometry of
these surfaces, found in nature such as soap films, has inspired archi-
tects and engineers to design lightweight structures [5]. At each point
on the minimal surface geometry, the mean curvature (𝐻 = 𝑘1 × 𝑘2) is
zero, and the Gaussian curvature (𝐺 = 𝑘1 × 𝑘2 < 0, considering 𝑘1 and

∗ Corresponding author at: Polyhedral Structures Laboratory, Department of Architecture, Weitzman School of Design, University of Pennsylvania, Philadelphia,
PA, 19146, USA.

E-mail addresses: akbariae@upenn.edu (M. Akbari), masouda@upenn.edu (M. Akbarzadeh).

𝑘2 as the principal curvatures of the surface) is negative [6]. Due to
their high surface-to-volume ratio and unique morphology, shells with
these geometries exhibit superior mechanical performance compared to
other cellular structures, such as strut-based cellular structures [7–9].

1.2. Graphic statics

Graphic statics is a geometrical form-finding technique for designing
structures in equilibrium for a specific boundary condition. Using this
technique as an intuitive structural design method, one can design a
structure using reciprocal diagrams, while controlling the internal flow
of force and the external loading scenario [10–14].

Three-dimensional graphic statics (3DGS) or polyhedral graphic
statics (PGS), as an extension of two-dimensional graphic statics (2DGS),
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Fig. 1. Reciprocal relations between the diagrams of force (left) and form (right) in
2D graphic statics (a), and 3D graphic statics (b).

enables the user to design axially-loaded structures in 3D in which
no bending occurs [15–18]. A clear relation between the form and
force diagrams enables the designer to represent the equilibrium of a
3-dimensional node (form diagram) using a closed polyhedron (force
diagram) (Fig. 1a). In this method, each edge 𝑒𝑖 or force f𝑖 in the form
diagram is perpendicular to the corresponding face 𝑓𝑖† in the force
diagram. The form diagram represents the geometry of the structure
combined with the reaction forces and applied loads, while the force
diagram represents the equilibrium of internal and external forces [15].
In this paper, the form diagram is denoted by 𝛤 and the force diagram
by 𝛤 †. Moreover, the force diagram’s topological elements are denoted
by † superscript (Fig. 1). These diagrams consist of vertices 𝑣𝑖, edges 𝑒𝑖,
faces 𝑓𝑖, and cells 𝑐𝑖. Each vertex, edge, face, and cell (𝑣𝑖†, 𝑒𝑖†, 𝑓𝑖†, 𝑐𝑖†)
in the force diagram corresponds to a cell, face, edge, and vertex
(𝑣𝑖, 𝑒𝑖, 𝑓𝑖, 𝑐𝑖) in the form diagram [15]. In these structures, the mag-
nitude of the force in each strut member (f𝑖) in the form diagram is
proportional to the area of the corresponding face in the force diagram
(A𝑓𝑖 ). In this technique, by applying different subdivisions to a force
diagram, one is able to design various cellular strut-based structures
in equilibrium. Adding thickness to each edge of the form diagram
proportional to the area of its corresponding face results in a strut-based
cellular funicular structure (CFS) [19].

1.3. Shellular structures in the context of graphic statics (shellular funicular
structures)

Within the realm of 3D graphic statics, increasing the number of
subdivisions in the force diagram yields a form diagram characterized
by smaller edges and distributed forces among the members (depicted
in Fig. 2a–h). This progression results in edges that approach negligible
lengths, effectively approximating a surface as a form diagram. In the
realm of polyhedral graphic statics, particular subdivision methodolo-
gies come into play to approximate surfaces characterized by anticlastic
or synclastic curvatures as form diagrams [9].

Fig. 2a showcases a tetrahedron employed as a force diagram, cor-
responding to a node in equilibrium with dual upward and downward
forces. This configuration represents a form diagram depicting a node
with anticlastic curvature. To generate this tetrahedron, the endpoints
of two skew lines, denoted as 𝑙𝑖† and 𝑙′𝑖

†, are connected. A division of
these lines into equal segments, followed by establishing a tetrahedron
2

Fig. 2. The process of applying an anticlastic subdivision to a pair of edges (labyrinths)
in the force diagram, corresponding to a discrete anticlastic surface as a form diagram.

between every pair of segments from each line, leads to the subdivision
of the force diagram into multiple tetrahedrons. This process ultimately
results in a discrete anticlastic surface showcased as a form diagram
(as presented in Fig. 2a–d) [9,23]. Table 1 lists the nomenclatures used
to describe both the introduction and the methodology section of this
paper.

This specific mode of subdivision is referred to as the anticlastic sub-
division and this group of structures are called shell-based cellular (shel-
lular) funicular structures. These structures are efficient lightweight
structures with applications in different scales, from micro-scale to
macro-scale (Fig. 3) [20–22].
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Fig. 3. Various applications of shellular funicular structures in the industry from microscale (a, thriply periodic shellular funicular materials [20]), to mesoscale (b, self-healing of
metal shellular structures [21]), and macroscale(c, earth-based shellular structure [22]).
Fig. 4. Three different possibilities for designing a shell as a form diagram corresponding to a tetrahedron as a force diagram, three pairs of skew edges in a force diagram (a–f)
and dividing the force diagram based on these edges results in three different shells with curvatures in different directions (g–l).
In this technique, the lines 𝑙𝑖† and 𝑙′𝑖
† serve a dual role: as the

subdivision axes within the force diagram and the curvature axes within
the form diagram (as demonstrated in Fig. 2d). These lines represent
components of two distinct connectivity graphs known as labyrinths,
which link two separate regions segregated by the intervening anti-
clastic surface [24]. Through the utilization of the anticlastic subdivision
technique, the design of an anticlastic polyhedral surface, denoted as
a Shellular Funicular Structure (SFS), becomes achievable [20]. The
labyrinths, functioning as the subdivision axes within the form and the
control elements within the force, streamline the process of designing
and manipulating the SFS’s form-finding methodology [23]. It is worth
mentioning that in this paper, all of the specimens are designed using
a plugin for Rhinoceros, named Polyframe [25].

1.4. The role of labyrinths in designing and controlling the geometry of
shellular funicular structures

The anticlastic surface geometry depicted in Fig. 2d effectively parti-
tions the 3D space into two distinct subspaces, denoted as the upper and
lower regions, which are determined by the shell’s geometric structure.
These subspaces are further characterized by their respective curvature
3

axes, namely 𝑙𝑖 and 𝑙′𝑖 . In essence, these axes can be symbolic of the
connectivity graph within intricate shellular geometries, often referred
to as labyrinths [26,27]. Throughout this paper, these labyrinths are
highlighted in red and black hues, exemplified in Fig. 2.

Within anticlastic geometries, the labyrinths assume the form of
two interwoven graphs, with their edges consistently positioned in
a skew orientation to each other. As the anticlastic surface resides
in between, the two labyrinths become mutually intertwined, as vi-
sualized in Fig. 2d. Notably, changing the angle of these labyrinths
induces modifications in the geometry of the surface [26]. It is worth
mentioning that the relationship between the labyrinths in the form
and force diagrams of Polyhedral Graphic Statics (PGS) (as shown in
Fig. 2) is as follows: (a) the labyrinth 𝑙𝑖 within the form diagram
aligns parallel to the 𝑙†𝑖 in the force diagram; and (b) the labyrinth
𝑙𝑖 operates as the curvature axis in the form diagram, while its coun-
terpart in the force diagram serves as the axis for subdivision. The
topology of an anticlastic surface can be comprehensively explained
through its associated labyrinths [26]. In essence, adhering to the
geometry and topology of prescribed labyrinths, a force diagram can
be subdivided, facilitating the construction of a reciprocal compression-
only or tension-only anticlastic shell, tailored to a specific loading
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Fig. 5. Aggregation of tetrahedrons as force diagrams and subdividing them along the
labyrinths (a, c, e) resulting in three different shellular geometries (b, d, f).

condition. These advancements can be accomplished by employing the
methodologies inherent in PGS.

1.4.1. The labyrinths design principles
In the design process of designing shellular structures in the context

of graphic statics using labyrinth graphs, certain geometrical and topo-
logical requirements should be satisfied. These requirements define the
labyrinths’ design principles and are as follows.

1. Tetrahedralization Each pair of labyrinths’ edges in the force dia-
gram should only form a tetrahedron in between, corresponding
to a node with an anticlastic curvature in the form diagram
(Fig. 2).

2. Skew labyrinths Each force diagram corresponding to a shellular
architecture contains two labyrinths, including one labyrinth
edge from each set. Each tetrahedron in the force diagram only
includes one labyrinth edge from each set in a skew position to
the other.

3. Labyrinths’ continuity In a subdivided force diagram, each
labyrinth edge in a tetrahedron can only be connected to the
labyrinth’ edges from the same set in the neighboring tetrahedral
cell (Fig. 5).

1.4.2. Three different shellular possibilities
As mentioned in Section 1.4.1, the labyrinth graphs are in a skew

position to each other in a tetrahedron and never touch each other.
In each tetrahedron, there are three different possibilities for choosing
these skew edges. In fact, each tetrahedron consists of 6 edges or 3
pairs of skew edges (Fig. 4a). Subdividing the force diagram based
on each pair results in an anticlastic patch in a different direction
(Fig. 4b). Aggregating the tetrahedrons results in shellular structures
with more complexity. In fact, while aggregating the tetrahedrons, by
choosing a pair of edges as the labyrinth graphs of the first tetrahedron,
the labyrinth edges of the neighbor tetrahedron can be determined as
4

well. Fig. 5 displays three different possibilities for designing shellular
structures from aggregating three tetrahedrons as a force diagram.
In this process, after generating the first tetrahedron (e.g., 𝑐†𝑖 ) and
selecting the labyrinths of this tetrahedron (e.g., 𝑙†𝑖,1 and 𝑙′†𝑖,1), the
common labyrinth 𝑙†𝑖,1 between this cell and its neighbor (e.g., 𝑐†𝑗 ),
will be selected and its pair 𝑙′†𝑖,2 in the second cell will be selected.
Similarly, the labyrinths of the third cell will be identified. Finally, each
force diagram will be subdivided based on its labyrinths (Section 1.3),
generating three different shellular structures [28].

By employing the aggregation method explained above, it becomes
feasible to synthesize a shellular structure through the assembly of
diverse tetrahedrons. However, this process is inherently intricate, and
establishing precise boundary conditions for the structure presents a
considerable challenge. In contrast, designing a strut-based cellular
structure in the context of graphic statics is a straightforward pro-
cess. In this process, after defining the external boundary condition
of the structure, a force diagram corresponding to the boundary will
be designed and it will be subdivided in order to generate a cellular
structure [15]. Therefore, designing a shellular structure can start
with designing a cellular structure and translating it to a shellular
one. According to the principles mentioned in Section 1.4.1, each
force diagram for a shellular structure should only include tetrahe-
drons resulting in 4-valency nodes in the form diagram (nodes that
are connected to 4 edges). Although there are multiple techniques
to tetrahedralize a convex polyhedron (to subdivide it into a group
of non-overlapping tetrahedra) [20,28,29], one needs to ensure that
identifying the labyrinths graphs in the force diagram is possible,
without any geometric frustration.

1.5. Objectives and contributions

As mentioned before, strut-based cellular funicular structures com-
prise slender members that are prone to buckling. Furthermore, the
fabrication of the nodes with complex morphologies in these types
of structures is not an easy take task. In contrast, shellular funicular
structures have better structural performance compared to cellular
structures for the same boundary condition and volume density. The
ultimate goal of this research is to create a fully automatic graphi-
cal/computational method to translate any cellular funicular structure
to a shellular version. In order to achieve this goal, the labyrinth duality
as a new principle will be introduced using which the force diagram
of a cellular funicular structure can be translated to the force diagram
of a shellular funicular structure. This translation will preserve the
global force diagram, ensuring that the external boundary condition
will remain the same for both cellular and the shellular version.

2. Methods

In this section, the simple process of generating an anticlastic patch
in the context of graphic statics will be extended and a robust method-
ology for designing any shellular structure will be proposed. In this
process, a robust framework is developed, translating any cellular
structure to its shellular counterpart in the context of graphic statics.
In the next section, a computational algorithm is introduced in order
to design translate any cellular funicular structure to a shellular ver-
sion. Next, different shellular forms in pure compression or tension
designed for different boundary conditions will be explored. After
focusing on different advantages of this technique, such as designing
a hybrid shellular or cellular-shellular structures, the authors compare
the structural performance of cellular and shellular architectures and
explore the application of this technique in the real world. In this
exploration, the mechanical properties of different shellular structures
will be evaluated, and a structurally informed shellular geometry will
be designed.
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Fig. 6. An overview of the methodology that is going to be explained in the paper along with the results.
.

Table 1
Nomenclature for the symbols used in this paper and their corresponding descriptions
Topology Description

𝛤 Form diagram (primal)
𝛤 † Force diagram (dual, reciprocal)
𝑣 # of vertices of 𝛤
𝑒 # of edges of 𝛤
𝑓 # of faces of 𝛤
𝑐 # of cells of 𝛤
𝑣† # of vertices of 𝛤 †

𝑒† # of edges of 𝛤 †

𝑓 † # of faces of 𝛤 †

𝑐† # of cells of 𝛤 †

𝐧𝑖 Unit normal vector of face 𝑓𝑖
𝐟𝑖 Point load on 𝑣𝑖
𝑙𝑖 Edge of the labyrinth’s graph in the form diagram
𝑙′𝑖 Dual edge of 𝑙𝑖 in the form diagram
𝑙𝑖
† Edge of the labyrinth’s graph in the force diagram

𝑙′𝑖
† Dual edge of 𝑙𝑖 in the force diagram

2.1. Results

This section describes the methodology’s framework and the char-
acteristics of the results anticipated from this approach. As depicted
in Fig. 6, the methodology presented in this article facilitates the
automated translation of force and form diagrams of a cellular funicular
structure (Fig. 6a) into corresponding force and form diagrams of
a shellular funicular structure (Fig. 6f). It is noteworthy that dur-
ing this process, three distinct possibilities for labyrinth graphs exist
(Fig. 6b, c), leading to the creation of three distinct two-manifold
shellular structures (Fig. 6d). Furthermore, Fig. 6e visually represents
the refined versions of the designed two-manifold shellular structures
using the Catmull–Clark algorithm [30]. Moreover, Fig. 6f illustrates
the refined version employing anticlastic subdivision within the con-
text of graphic statics. The discrepancy between these two techniques
5

lies in the structural force paths. Precisely, the subdivision accom-
plished in the context of graphic statics faithfully exhibits the exact
force distribution within the structure under specific loading condi-
tions, whereas the visualization models utilizing the Catmull–Clark
algorithm merely approximate the smoothed version of the shellu-
lar structures. Previous researches emphasize that the utilization of
anticlastic subdivision within the domain of graphic statics yields a
geometry that is more structurally reliable, while geometries generated
through the Catmull–Clark algorithm are better suited for visualization
purposes [31].

2.2. Duality between the labyrinth graphs

Consider a polyhedron with its dual superimposed on top of it
(Fig. 7). In order to construct the dual, it is enough to connect the center
of each face to the center of the polyhedron. If we consider the edges
of the polyhedron as a labyrinth graph, we realize that its labyrinth
pair is the dual of the polyhedron. In fact, these graphs conform to all
of the labyrinth’s design principles. Each edge of one labyrinth graph
(e.g., 𝑒†16) is in a skewed position to the corresponding edges in the
second graph (e.g., 𝑒†1, 𝑒

†
5, 𝑒

†
8, 𝑒

†
9). Therefore, one is able to construct a

tetrahedron between each pair (e.g., a tetrahedron between 𝑒†16 and 𝑒†1,
𝑒†16 and 𝑒†5, 𝑒

†
16 and 𝑒†8, 𝑒

†
16 and 𝑒†9), and translate the global polyhedron to

a group of non-overlapping tetrahedrons (i.e., by repeating this process
to all of the edges of the black labyrinth graph). Furthermore, in each
of these tetrahedrons, only one labyrinth edge from each set exists and
all of the labyrinth edges from the same set are connected together.

Therefore, similar to the form and force diagrams, two labyrinth
graphs are dual of each other and in a reciprocal relation. In fact, each
vertex 𝑣†𝑖 , edge 𝑒†𝑖 , face 𝑓 †

𝑖 , and cell 𝑐†𝑖 in the first labyrinth’s graph
(Fig. 7) corresponds to a cell 𝑐′†𝑖 , face 𝑓 ′†

𝑖 , edge 𝑒′†𝑖 , and vertex 𝑣′†𝑖 in
the second set. In these labyrinths’ graphs, each edge in one set (e.g., 𝑒†1
in labyrinths two that are marked with red color) are in a specific angle
with each face in the second labyrinth graph (e.g., 𝑓 † in labyrinth 1
1
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Fig. 7. Reciprocal relation between two sets of labyrinths in the context of 3D graphic
statics, along with highlighting each labyrinth edge and its dual edges.

that is marked with black color). Hence, each edge of the first labyrinth
graph is always in a skew position with the edges of the corresponding
face in the second labyrinth graph (Fig. 7). In fact this also shows that
in order to find the corresponding edges for each labyrinth edge, it is
enough to find the edges of the corresponding face to that edge. Thus,
by superimposing each polyhedron and its dual, one can design a pair of
labyrinth graphs. Considering the polyhedron as a force diagram and
its dual as a form diagram, we conclude that by superimposing each
form diagram on top of the force diagram, one can generate a pair of
labyrinth graphs. In this situation, each vertex in the form is inside each
cell in the force and each edge in the form is in a specific angle with
each face in the force diagram.

2.2.1. Tetrahedralizing the force diagram based on its dual
In this section, a general methodology is explained for tetrahe-

dralizing a polyhedron, yielding a force diagram that allows for the
identification of labyrinths and their translation into a shellular struc-
ture. This process takes advantage of the dual relationship between the
force and the form diagram. According to the discussion in Section 2.2,
by superimposing a polyhedron and its dual, one can result in a pair of
labyrinth graphs, in which the edges of the polyhedron correspond to
one graph and the edges of the dual correspond to the second graph.
Therefore, by generating a tetrahedron between each edge in the first
labyrinth graph and the corresponding edges in the second set, one is
able to subdivide the initial polyhedron to a group of non-overlapping
tetrahedrons.

Consider a tetrahedron with four faces as a force diagram corre-
sponding to a node in equilibrium with four forces as a form diagram.
A simple way to tetrahedralize this polyhedron is to superimpose its
dual on top of it, generate the labyrinth graphs from the edges of
the polyhedron and its dual, and tetrahedralize the polyhedron based
on the labyrinths’ design principles (Fig. 8a). As mentioned in Sec-
tion 1.3, applying an anticlastic subdivision in each tetrahedron in a
tetrahedralized force diagram between two labyrinth edges translates
the force diagram to the force diagram of a shellular funicular structure
(Fig. 8a). This is a general rule and can be applied to any convex
polyhedron (Fig. 8c,e). Observing the generated shellular structures,
we realize that all of them represent the volumetric or piped version
of the internal labyrinth that is marked with black color. Applying the
same process to any convex polyhedron as a force diagram results in a
6

Fig. 8. Superimposing the dual of any convex polyhedron on top of that and
tetrahedralizing the polyhedron based on that results in a force diagram that after
applying an anticlastic subdivision (a, c, e) results in a shellular structure, displaying
the piped version of the internal labyrinth (b, d, f).

shellular structure as a form diagram, representing the piped version of
the internal labyrinth or in other words, the piped version of the dual
of the initial polyhedron (Fig. 8).

As mentioned in Section 1.4.2, in a tetrahedralized force diagram,
there are three different possible labyrinth designs, resulting in three
different shellular structures. Therefore, if this tetrahedralization al-
ways results in one labyrinth set corresponding to a shellular structure,
it is possible to design two more labyrinths graphs in the tetrahe-
dralized force diagram resulting in three different shellular structures.
Therefore this technique can be used in order to find three different
labyrinth graphs for any polyhedron as a force diagram. Next section
clearly describes the process of translating a force diagram into a
shellular structure’s force diagram corresponding to three different
shellular funicular structures.

2.2.2. Designing shellular funicular structures
Fig. 9 displays the process of translating the force and form dia-

gram of a cellular structure to a shellular version using the proposed
tetrahedralization technique. The process starts with generating a force
and the form diagram of a cellular structure (Fig. 9a,b). Next, by
superimposing the force and the form diagrams on top of each other
(Fig. 9c), the user is able to generate a new force diagram by tetrahe-
dralizing the force diagram based on the two superimposed diagrams
(Fig. 9d). Finally, using the method explained in Fig. 4, one can gener-
ate three different labyrinths graphs (Fig. 9e). Applying the anticlastic
subdivision to each tetrahedron results in three different shellular
structures.
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Fig. 9. Translating a cellular funicular structure to three different shellular versions by tetrahedralizing the force diagram by superimposing its dual on top of itself, (a) cellular
force diagram, (b) cellular form diagram, (c) Superimposing the force and the form diagram on top of each other, (d) tetrahedralizing the polyhedron based on the superimposed
diagrams, (e, g, i) generating three different labyrinth graphs in the force diagram (f, h, j) resulting in three different shellular structures.
Fig. 10. Singularity in tetrahedralizing a force diagram, initial labyrinths for a
tetrahedron (a), an attempt to find the second versions of the labyrinth graphs by
highlighting different pairs of labyrinth edges in each cell and moving to the next cell
(b,c), the highlighted cell with two labyrinth edges from the same set displaying a
singularity in the process (d) and subdividing each tetrahedron cell to two cells (e)
which results in resolving the singularity of the force diagram (f).
7

2.2.3. Singularity in translating a strut-based cellular structure to a shellular
funicular structure

In order to verify the accuracy and robustness of the tetrahedraliza-
tion methodology described above, it is necessary to conduct thorough
testing on a variety of geometries with different topologies. In some
situations, due to the specific edge-cell connectivity in a force diagram,
when one edge is connected to an odd number of cells, the algorithm
explained above has only one solution (instead of 3) or in more complex
cases, it might not result in any solutions. Fig. 10a displays a tetrahe-
dralized force diagram with 12 cells and possible labyrinths’ graphs 𝑙†𝑖
and 𝑙′†𝑖 . Figs. 10b,c,d show an attempt to find the second pair of the
possible graphs. In cell 𝑐†𝑖,1, two labyrinth edges 𝑙†𝑖,1 and 𝑙′†𝑗,1 are selected.
Similarly, labyrinths edges of the next cell 𝑐†𝑖,2 are 𝑙′†𝑖,1 and 𝑙†𝑗,2. Moving
to the next cell 𝑐†𝑖,3, we observe that this cell includes two labyrinths 𝑙′†𝑗,1
and 𝑙′†𝑖,2 from the same set. As explained in Section 1.4.1, this situation
is not acceptable according to the labyrinths’ design principles. In this
situation, cell 𝑐†𝑖,3 is called a singular cell. In order to solve this problem,
one needs to simply divide all the cells (e.g., cell 𝑐†𝑖,3) into two cells
(e.g., cells 𝑐†𝑖,4 and 𝑐†𝑖,5). Fig. 10e,f displays that in the new condition, one
is able to properly design the second possible labyrinth sets. It is worth
mentioning that this is a general solution for the tetrahedralization and
can be repeated in any other geometry in order to design shellular
structures (see Fig. 13).

2.3. Computational implementation of translating any strut-based cellular
funicular structure to a shellular funicular structure

This section explains an algorithm to translate any cellular funicular
structure to three different shellular funicular structures (Fig. 11). The
algorithm starts with receiving a force and form diagram of a cellular
funicular structure as inputs (Fig. 12a). As mentioned in Section 1.4.2,
in order to generate a shellular structure, one needs to ensure that
the form diagram only includes 4 valency vertices. Therefore, the
force diagram should only include tetrahedrons. If the force diagram
is already tetrahedralized, the algorithm moves to the next step. If not,
it uses the tetrahedralization method that is explained in Section 2.2.1
to tetrahedralize the force diagram using the initial force diagram and
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Fig. 11. The flowchart for translating any cellular funicular structure to three different
shellular funicular structures.

its reciprocal form diagram. In the next stage, the algorithm iteratively
searches through each cell and finds the labyrinths of the cells. In
this process, if any singularity happens in the process, as explained
in Fig. 10, each cell will be divided into two cells to change the
edge-cell connectivity to resolve the singularity. After finding the first
labyrinth graphs, using the method explained in Section 1.4.2, the
algorithm finds two other possible labyrinth graphs (Fig. 12b, c). At
this level, the user can visualize the force diagram in order to choose
between three different shellular structures. In order to generate the
shellular form diagram, the algorithm generates the form diagram by
materializing the edges and then, it materializes all the faces except the
ones corresponding to the labyrinth edges in the force diagram in order
to result in a two-manifold solution (Fig. 12d) [28]. Afterward, the user
can use any smoothing algorithm (e.g., Catmull Clark algorithm [30,
31]) to visualize the smooth version of the 2-manifold form diagram.
After choosing the desired form, the algorithm applies an anticlastic
subdivision to the force diagram to subdivide it along its labyrinths
(Section 1.3) (Fig. 12e). Finally, by generating the form diagram of the
subdivided force diagram and materializing the faces, except the ones
corresponding to the labyrinth graphs, the user results in a shellular
funicular form diagram (Fig. 12f) (see Fig. 14).

2.4. Exploring shellular forms in pure compression or tension

In this section, an assortment of illustrations is presented to demon-
strate the application of the proposed method in the design of shellular
8

and cellular/shellular structures. Fig. 12 displays a group of shellular
funicular forms designed for different boundary conditions. The first
group shows the design of three different shellular funicular column
structures designed for specific boundary conditions with loads from
the top and the bottom of the structure (Fig. 12a–e). The exam-
ple starts with tetrahedralized force diagram representing a cellular
structure (Fig. 12a). Next, a cell will be chosen as the first cell for
designing the labyrinth graphs and its labyrinth edges will be marked
(Fig. 12b). Afterward, in an iterative process, the labyrinth edges of the
whole force diagram will be designed (Fig. 12c). After visualizing the
two manifold form diagrams corresponding to the force diagram with
labyrinth graphs (Fig. 12d), the smooth version of the form diagrams
will be visualized in order to give the user the opportunity to choose
between them (Fig. 12e). Finally, an anticlastic subdivision will be
applied to the force diagram to subdivide it along with the chosen
labyrinth graph, resulting in the subdivided shellular funicular form
diagram (Fig. 12f). The second example displays the visualization of
three different shellular possibilities for designing a dome structure
(Fig. 12f–j). Similarly, the last example explores different possibilities
for designing a shellular funicular bridge structure (Fig. 12k–o).

2.4.1. Constraining the boundary conditions of shellular funicular struc-
tures

When designing a structure with specified boundary conditions
using 3D graphic statics, it is crucial to understand the procedure for
constraining the boundary edges of the structure to a specific plane. For
instance, Fig. 12a illustrates the form and force diagrams associated
with a column that is constrained between two surfaces, such as the
ceiling and the floor. The force diagram highlights the cells that have
been added to confine the column within the two surfaces, indicated by
dashed lines. To constrain the force diagram to a particular surface, it
is necessary to extrude the force diagram along the constrain surface’s
normal vector and then intersect it with a parallel surface of choice. In
this example, the force diagram is extruded upwards and downwards,
and intersected with surfaces parallel to the constraining ones. In
Fig. 12k–o, the dome is solely constrained to the floor. Therefore, the
force diagram is extruded downwards and intersected with a surface
parallel to the ground surface. In Fig. 12f–j, the bridge is constrained
on both sides in the 𝑥 direction and also on the top. Consequently, the
force diagram is extruded in the 𝑥 and 𝑧 directions, and intersected
with the 𝑦𝑧 and 𝑥𝑦 planes. Similarly, like the force diagram of a cellular
structure, the force diagram of a shellular structure can also be confined
to a specific plane. Fig. 12f demonstrates the process of constraining a
shellular force diagram to planes parallel to the 𝑥𝑦 plane, situated at
the top and bottom of the structure.

2.4.2. Designing hybrid cell-shell structures
This section explains the process for designing a hybrid structure

ranging from cellular to shellular funicular structures. In this exam-
ple, the structure that has been shown in Fig. 9f is redesigned using
four different levels of subdivisions in order to visualize structures
ranging from strut-based cellular to shell-based cellular (shellular) (Sec-
tion 2.4.2). In order to connect the force diagrams of these structures
together, due to the difference in the level of subdivision, one needs
to design connection cells between the force diagrams corresponding
to branching elements in the form diagram. For instance, connecting
section A to B of the form diagram requires adding the branching
element consisting of edges 𝑒1, 𝑒2, 𝑒3, and 𝑓1 in the form diagram,
corresponding to the cell 𝑐†1 in the force diagram. Similarly, other
sections of the form diagram can be attached together, representing
a hybrid cellular/shellular funicular structure designed for a defined
boundary condition. In fact, this is one of the greatest benefits of this
technique since it allows the user to combine different structures with
various design languages while maintaining the boundary condition
and equilibrium of the system.
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Fig. 12. Exploring shellular forms in pure compression or tension, the force and form diagrams of s cellular structure with loads from the top and the bottom of the structure
approximating a column (a), selecting three different pairs of labyrinth in a cell in the force diagram (b) which results in three force diagrams with three distinct labyrinth graphs
(c) corresponding to three different two manifold shellular structures before smoothing (d), and after smoothing using Catmull Clark algorithm (e). Next row (f–j) displays the
same elements for a bridge and section the below section (k–o) displays the same process for a dome.
Table 2
Comparing specimens’ stiffness (N∕mm), surface area (mm2), average mean curvature(1∕mm), maximum mean curvature (1∕mm), and yield
point(N).

Stiffness
(N∕mm)

Surface area
(mm2)

Average mean curvature
(1∕mm)

Maximum mean curvature
(1∕mm)

Yield point (N)

Shellular 1 93.29 7,125 0.046 0.09 300
Shellular 2 125.47 13,247 0.097 0.19 450
Shellular 3 150.10 12,098 0.210 0.43 550
2.4.3. Designing a hybrid shellular structure
Similar to the design described in the preceding section, it is possi-

ble to merge various shellular structures under specific circumstances.
Fig. 15 illustrates this concept, where two shellular structures are
9

combined by integrating their force diagrams while maintaining a con-
sistent labyrinth design at the intersection. It is crucial to ensure that
the edges of one structure align with the edges of the other structure
at the connection point. Consequently, when the labyrinth design at
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Fig. 13. Physical models of a group of 3D printed cellular and shellular funicular structures, in each row, the first column displays a cellular funicular structure and the rest
represents three different shellular possibilities.

Fig. 14. Designing a hybrid cell-shell structure, the force diagram of a hybrid cell-shell structure with highlighted branching cells (a), and the form diagram of a cell-shell funicular
structure highlighting the branching section, joining two sections of the structure with different number of subdivisions (b) (it is important to notice that in this form diagram,
the edges have been materialized in contrast with the previous figures in which the faces in shellular form diagrams were materialized.).
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Fig. 15. Designing a hybrid shellular structure, the force diagram of a hybrid shellular structure comprising two different force diagrams with similar transition layer (a), the form
diagrams of two shellular structures (b), and the form diagram of the hybrid shellular structure (c).
Fig. 16. Comparing the structural performances of cellular and shellular funicular structures. Load–displacement curves of cellular and shellular specimens (a) Mises stress contour
of the cellular specimen (b), Mises stress contour of the shellular 1 specimen (c), shellular 2 specimen (d), and shellular 3 specimens (e) along with their mean curvature distribution
heat map (f, g, h).
the boundary is identical, the force diagrams of the two structures can
seamlessly merge together.

3. Results

This section concentrates on Comparing structural performances of
cellular and shellular funicular structures and one of the applications
of the proposed technique for designing shellular funicular structures
in the industry.

3.1. Comparing structural performances of cellular and shellular funicular
structures

Cellular funicular structures are characterized by slender, elongated
members that are susceptible to buckling under load. Various numerical
analyses demonstrate that shellular funicular structures exhibit superior
11
structural performance in comparison to their cellular funicular coun-
terparts [9,20]. Fig. 16 displays a numerical analysis of the structural
characteristics of cellular structure and its shellular counterparts to
investigate the mechanical response of distinct structures, all of them
composed of steel and possessing identical relative density. In this com-
parison, the structures displayed in Fig. 6 have been compared to each
other. Each structure’s relative density 𝜌 is defined as 𝑉𝑠∕𝑉𝑅𝑉 𝐸 where
𝑉𝑠 and 𝑉𝑅𝑉 𝐸 denote the volume of the solid material in the structure
and representative volume element or the volume of the bounding box,
respectively. Each of these structures with a volume of 5810 mm3

has been designed for a boundary box with a volume of 250, 000 mm3

(50 mm × 50 mm × 100 mm). Therefore, the relative density of each
structure is equal to 0.02. Each structure is simply supported from the
bottom and tolerates a distributed load of 1 kN from the top along the
𝑍 axis. Employing tetrahedral meshes containing approximately half a
million elements, all specimens are modeled using an elastic, perfectly
plastic behavior model, subject to similar boundary conditions, loading
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Fig. 17. Application of shellular funicular structures designed in the context of graphic statics, equivalent stress of three different shellular funicular unit-cells designed in PGS
(a–c), the mean curvature distribution heat map of the unit-cells (d–f), the podometry study of a foot (g) [32] ©Medicapteurs, plan view of a midsole of a sneaker designed and
adapted to the podometry study using shellular technique (h), the force displacement chart displaying three structures with different stiffnesses (i), and the front view of the
designed sneaker’s midsole along with the micro structures distributed based on the podometry study (j).
rate, and element types. The load–displacement curve shows that for a
similar displacement in these specimens (e.g., 2.5 mm), the shellular
specimens can tolerate higher loads than the cellular version (i.e., 150,
250, and 350 N for the shellular specimens compared to 100 𝑁 for the
cellular version). In fact, adding faces between the struts in the shellular
model results in a structure with better structural performance, specif-
ically higher shear capacity [20]. Table 2 illustrates a comparison of
stiffness, surface area, average mean curvature, maximum mean curva-
ture, and yield point among different specimens. Upon examination,
it becomes evident that shellular specimen no. 3 is stiffer than no.
2, no. 2 is stiffer than no. 1, and all these specimens exhibit greater
stiffness than the cellular structure. The same pattern is observed in the
yield points, average mean curvature, and maximum mean curvature.
However, there is no correlation between the surface area and the
stiffness of the structure. Clearly, further investigation is required to
12
establish a connection between the curvature of the structure and
its stiffness. It is important to notice that in these comparisons, the
geometry of the structures before the materialization is considered.
Therefore, surface area and curvature do not have a meaning for
cellular structures, comprising linear elements and are only measured
for the shellular structures.

3.2. Application of shellular funicular structures designed in the context of
graphic statics

The field of footwear design constantly seeks to incorporate fresh
concepts, advanced technology, and innovative materials in order to
enhance comfort, safety, durability, performance, and quality. Through
laboratory measurements, designers gain valuable insights into the
impact of their designs, novel materials, and performance-enhancing
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Table 3
Comparing unit-cells’ stiffness (N∕mm), surface area (mm2), average mean curvature(1∕mm), maximum mean curvature (1∕mm), and yield
point(N).

Stiffness
(N∕mm)

Surface area
(mm2)

Average mean curvature
(1∕mm)

Maximum mean curvature
(1∕mm)

Yield point (N)

Unit-cell 1 34.01 380 0.49 0.92 9
Unit-cell 2 31.84 430 0.43 0.87 8
Unit-cell 3 30.48 379 0.40 0.81 7.5
features. When developing footwear, it is crucial to prioritize the
creation of products that take into account the pressure endured by
the feet, ensuring that the design is well-informed in this regard.
This section focuses on designing structurally-informed shoes using the
shellular methodology that is explained in this paper. In this process,
the focus is on the design of the midsole of a shoe in order to optimize
the stiffness of the midsole according to the pressure endured by the
feet. To create a structurally informed midsole design, the authors con-
centrate on developing diverse shellular micro-structures with varying
levels of stiffness tailored to different sections of the midsole.

3.2.1. Evaluating structural performance of different shellular unit-cells
The design process starts with designing different shellular funic-

ular structures with similar relative densities. Fig. 17a–c displays the
structural performance of three different shellular unit-cells designed
using the proposed technique. Each of these unit-cells with a volume
of 37 mm3 has been designed for a boundary box with a volume of
375 mm3 (15 mm × 15 mm × 15 mm). Therefore, the relative density
f each unit-cell is equal to 0.01. A numerical structural analysis is
erformed to study the mechanical behavior of three different shellular
unicular structures shown in Fig. 17a–c, fabricated using additive man-
facturing technique, made out of Polylactic Acid or PLA. A tetrahedral
esh consisting of approximately half a million elements is generated

or all specimens using elastic perfectly plastic behavior with similar
oundary conditions, loading speed, and type of elements. Each struc-
ure is simply supported from the bottom and is tolerating a distributed
oad of 30 N from the top along the 𝑍 axis. The preliminary load–
isplacement curve (Fig. 17i) demonstrates that the three structures
xhibit distinct stiffness behaviors within the elastic regime. Different
tiffness results in different flexibility, making each structure suitable
or specific loading conditions. Table 3 investigates a relation between
he structures’ stiffness, curvature, and yield points. Similar to Table 2
ncreasing the surface area and maximum curvature in a structure
as resulted in a stiffer specimen. Certainly, we cannot make a broad
eneralization about the connection between curvature and stiffness for
ll shell structures. Further research is necessary to thoroughly explore
his topic.

.2.2. Designing structurally informed shoes using shellular methodology
The design process begins by analyzing the podometry diagram

Fig. 17g), which provides valuable information about the pressure
istribution exerted by the foot on a surface. Subsequently, different
egions of the midsole experiencing varying levels of pressure are cov-
red with shellular structures of appropriate stiffness. Areas with higher
ressure are covered with structures of lower stiffness, while areas with
ower pressure are covered with structures of higher stiffness in order to
roperly absorb the pressure exerted by the feet. This design approach
nsures that the midsole’s structure is suitably flexible to interact with
he feet’s pressure, effectively accommodating and equalizing varying
orce levels. The final design of the structurally informed footwear
s depicted in Figs. 17h and 17j. In this design, the unit cells are
orphed along each area, with parts possessing lower stiffness acting

s energy absorbers. This design feature helps to equalize the pressure
xperienced by the foot, enhancing overall comfort and support.
13
4. Conclusion

This research introduces a fully automatic graphical method that
allows for the translation of any cellular funicular structure into a
shellular version. This translation process ensures that the global force
diagram remains preserved, guaranteeing consistency in the external
boundary conditions between the cellular and shellular versions. Using
this method, users have ample flexibility to manipulate and modify
the design to suit different loading scenarios. Additionally, users have
control over the magnitude of the forces on each edge of the shellular
structure, corresponding to the areas of the faces in the force diagram.
This allows for the allocation of more material to edges experiencing
higher forces, effectively balancing the force distribution within the
system. The tetrahedralization method that is provided in this research
enables the user to translate any cellular funicular structure into a
shellular funicular structure. Furthermore, for each cellular structure,
the technique proposes three distinct shellular structures, providing
users with the freedom to choose the most suitable option.

In the final section of the research, the structural performances of
cellular and shellular funicular structures designed using this method,
along with the application of the proposed technique in the design
of a group of shellular micro-structures are explored, highlighting
its practical implementation and potential advantages. Due to their
specific geometry, cellular funicular structures’ mechanical capacity
depends on the buckling performance of the struts. On the flip side,
shellular funicular structures exhibit superior structural performance
in terms of load-bearing capacity, stiffness, and shear capacity, thanks
to their specific geometries that include faces with anticlastic cur-
vatures. One notable limitation of designing cellular structures using
3D graphic statics is the structural stability of the geometry under
loading scenarios that they are not designed for. Each cellular structure,
designed within the context of graphic statics, achieves equilibrium for
a particular boundary condition. Consequently, the structure primarily
exhibits stretching-dominated behavior only for that specific loading
scenario. However, when the loading conditions change, the structure
tends to behave more like a bending-dominated structure. A recent
study by Akbari et al. (2022) [20] addresses this issue and highlights
that shellular funicular structures, in contrast to cellular funicular
structures, tend to exhibit stretching-dominated behavior even when
subjected to boundary conditions they were not specifically designed
for. In Section 3.2, three shellular funicular structures are designed for
three different directions (𝑥, 𝑦, and 𝑧), with the major loading occurring
along the 𝑧 axis. In fact that is why shellular structures are better
suited for this particular application, as they can effectively handle the
predominant loading direction and maintain their stretching-dominated
behavior. As a result, for the same boundary condition, a shellular
specimen can tolerate forces three times more than a cellular structure.

The developed methodology presents a versatile framework for the
creation of novel shellular structures with hybrid topologies, allowing
for tuning their mechanical properties. This framework holds signifi-
cant potential for various applications, ranging from engineering tissue
scaffolds at the microscale to the structure of artificial bones at the
mesoscale, and even to larger-scale applications such as buildings or
bridges.

However, various research aspects necessitate additional investi-
gation. The design methodologies presented within the framework of
graphic statics do not account for the structure’s self-weight in force
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equilibrium. Additionally, this is a material-independent technique that
solely addresses structural geometry. Consequently, the authors plan
to shift their focus in the future towards incorporating self-weight
and material characteristics into the design process, aiming to cre-
ate a more comprehensive and precise design technique. Moreover,
additional studies are required to examine the correlation between a
structure’s average curvature, maximum curvature, and stiffness. This
is essential for making generalizations based on the findings presented
in this article.
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