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Abstract

This paper presents a novel approach to structural form-finding using Polyhedral Graphic
Statics (PGS), in which two or more force diagrams are computationally merged to generate
new diagrams with complex topologies. Unlike conventional methods that directly construct
force diagrams composed of convex, non-intersecting cells, the proposed merging strategy
enables the creation of intricate force networks that include zero-volume and intersecting cells.
These configurations are difficult to achieve through conventional approaches and more
closely reflect real-world external loading scenarios. The resulting force diagrams often yield
novel structural forms that feature both tension and compression members in equilibrium.
Case studies leveraging the Geometric Degrees of Freedom (GDoF) further demonstrate how
a merged form diagram can produce multiple distinct structural configurations, each with
different arrangements of tension and compression members. Through a clear force mapping
process, the method enables designers to implement strategic material selection, placing
tension-optimized materials, such as high-strength cables or fiber composites, in areas
experiencing tensile forces, while utilizing compression-resistant materials in zones under
pressure loads. This expansion of the PGS design space enables innovative structural
solutions for architectural applications that require integrated tension-compression systems,
ranging from large-span bridges and canopies to potentially revolutionary vertical structures.

Keywords: Structural form-finding, tension-compression structure, algebraic three-dimensional Graphic Statics, Polyhedral
Graphic Statics, merge force diagrams

1. Introduction

The combination of structural logic and geometric form represents a fundamental challenge
for designers seeking to create lightweight, efficient structures. Graphic Statics (GS) offers a
unique framework for this synthesis, visualizing the relationship between structural forces and
corresponding members in the form through reciprocal diagrams (Rankine, 1864; Maxwell,
1864; Culmann, 1864). This approach creates an intuitive process that enables designers to
directly manipulate design while maintaining structural integrity through visual rather than
purely numerical methods.
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Extending GS from two to three dimensions experiences fundamental geometric complexities
that are linked to form generation. In three-dimensional Graphic Statics (3DGS), the topology
and geometry of force diagrams directly determine the set of realizable structural forms. One
of the 3DGS methods is the polyhedron-based approach - Polyhedral Graphic Statics (PGS)
(Akbarzadeh, 2016), which generates forms through the geometric manipulation of polyhedral
force diagrams constructed from non-intersecting polyhedral cells. However, the ability to
create and manipulate self-intersecting force diagrams would significantly expand the range
of achievable forms, particularly for mixed force structures, such as tension-compression
structures.
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Figure 1. Transformation of compression-only structure to tension-compression through algebraic
edge constraints. (a) Initial force diagram with compression cells and corresponding form diagram; (b)
intermediate state with edge length constraints - [, = 0,1, > 0, l; > 0; (c) Final configuration with
tension cells in upper region and eliminated boundary forces, achieved through complete edge
constraint application- 1, <0,[, <0,l; =0.

Recent developments in algebraic form-finding methods have enabled the rapid generation of
forms from geometrically complex force diagrams, including self-intersecting configurations
archived through Geometric Degree of Freedom (GDoF), which were previously
computationally intractable (Lu et al., 2024). This paper presents a novel geometric method
for creating topologically complex force diagrams through diagram merging operations,
expanding the design space for computationally generated mixed force forms.
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1.1. Algebraic 2D/3D graphic statics

The developments in computational methods have addressed the geometric constraints
inherent in 3DGS through algebraic formulations. Unlike iterative approaches that require
initial feasible configurations, algebraic methods provide exact solutions for reciprocal diagram
relationships. The algebraic formulation of GS originated from mathematical descriptions of
duality in self-stressed frameworks, establishing the theoretical foundation for computational
implementations (Micheletti, 2008). The introduction of linear algebraic systems for reciprocal
constraints marked a significant advancement, enabling analytical computation of force
distributions from form diagrams through edge vector closure conditions (Van Mele & Block,
2014). This approach computes all internal and external force magnitudes directly from the
connectivity and geometry of structural forms. Subsequent developments introduced
bidirectional manipulation capabilities, transforming algebraic GS into an interactive design
tool (Alic, 2017). This advancement allows real-time synchronization between force and form
diagrams, where modifications to either diagram automatically update its reciprocal
counterpart, facilitating iterative design exploration in two dimensions.

The three-dimensional extension required fundamental reformulation of algebraic constraints.
A comprehensive framework for 3DGS was established using linear systems that enforce
coplanarity and closure conditions for polyhedral face vectors (Hablicsek et al., 2019). This
method generates all possible reciprocal configurations through closed-form solutions,
accepting either force or form diagrams as input. Enhanced formulations incorporated user-
specified edge length constraints, providing parametric control over the solution space
(Akbarzadeh & Hablicsek, 2020), though vertex positioning remained indirect compared to
iterative methods (Nejur & Akbarzadeh, 2021). A quadratic formulation was developed to
incorporate face area constraints alongside edge lengths, enabling direct control over force
magnitudes through geometric manipulation of polyhedral faces (Akbarzadeh & Hablicsek,
2021). This capability proved particularly valuable for exploring tension-compression
structures. However, the quadratic nature increased computational complexity. Recent
improvements integrated vertex constraints and enhanced numerical stability while
maintaining computational efficiency (Lu et al., 2024). These advances make algebraic
methods practical for solving complex polyhedral form-finding problems.

Building on these algebraic advances, the edge constraint formulation enables the
transformation of force diagrams to generate structural systems that incorporate tension and
compression. Figure 1 demonstrates this capability through the modification of the initial
compression-only structure. In the configuration Figure 1(a), the force diagram consists
entirely of polyhedral cells oriented to represent compressive forces. The corresponding form
diagram shows a structure with uniformly distributed internal forces and external loads at the
boundary vertices. Through the application of edge constraints in the algebraic formulation,
specific edges in the force diagram can be assigned zero length ( I3 =0 ), effectively
eliminating their corresponding forces in the form diagram. This operation induces topological
changes in the force polyhedra, causing certain faces (for example, f; & f;) to flip their
orientation, a geometric transformation that corresponds to a reversal in force type from
compression to tension. The intermediate state Figure 1(b) shows the initiation of this process,
where edge constraints begin to modify the force distribution while maintaining overall
equilibrium. The final configuration, Figure 1(c), reveals the complete transformation that the
upper portion of the force diagram now contains inverted polyhedra, indicating tensile forces
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in the corresponding structural members. Simultaneously, the lateral forces at the upper
boundary have been eliminated through the edge constraints. This approach represents the
current state-of-the-art for generating mixed-force structures in PGS.
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Figure 2. (a) Form diagram; (b) force diagram showing shared edges between adjacent polygons; (c)
Minkowski sum transformation demonstrating the geometric transition from form to force diagram.

1.2. Problem statement and objectives

While previous approaches to PGS, either iterative or algebraic methods, often constrain
designers to begin with non-intersecting convex force polyhedron configurations. The
proposed method overcomes this limitation by introducing algorithms for identifying and
merging compatible faces between distinct polyhedral force diagrams, thereby enabling the
creation of integrated structural systems beyond compression-dominant structures. The
merging process follows a rigorous workflow that identifies corresponding faces, then
establishes topological consistency when joining the separate diagrams. This includes
remapping vertex indices, edge connections, and face definitions to ensure structural
coherence in the merged system. The resulting unified polyhedral force diagram maintains
equilibrium while expanding the potential design space.

2. Method

This section develops a geometric framework for constructing topologically linked force
diagrams of PGS. By introducing controlled merging operations between polyhedral cells,
enabling the generation of self-intersecting configurations while maintaining the mathematical
validity of the reciprocal relationships. The methodology addresses three critical aspects: first,
the identification of geometrically compatible merge candidates within existing force diagrams;
second, the execution of topological operations that preserve equilibrium conditions during
cell mixing; and third, the resolution of geometric conflicts arising from overlapping polyhedral
volumes. This framework leverages the recent advances in algebraic form-finding to compute
valid designs from these complex force configurations, establishing a direct computational
pipeline from geometric manipulation to form generation.



2.1. Geometric principle in two-dimensional graphic statics

The merging methodology begins with two-dimensional force diagrams to establish the
fundamental principles before extending to three dimensions. Figure 2 illustrates this process
through a simple truss example. The form diagram (I') shows a symmetric truss. The
corresponding force diagram (I'") consists of separate polygons for each node: triangle ABC
for node three, triangles BCD and ACD for nodes one and two. Each polygon satisfies local
equilibrium through vector closure, with edge width proportional to force magnitudes and
orientations following the 90-degree rotation convention.
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Figure 3. Edge merging operation in 2D graphic statics. Top row: initial compression-only system with
trapezoid force polygon and corresponding horizontal member form diagram; middle row: introduction
of force and form diagram for tension-only members; bottom row: merged configuration with
intersecting force diagram combining compression (blue) and tension (red) members.

The form diagram (') Figure 2(a) shows a truss configuration with a single applied load and
three nodes, supported by two reaction forces r; and r,. The topology is defined by vertices
(v = 3), edges (e = 6), and faces (f = 4). The corresponding force diagram, Figure 2(b),
represents the equilibrium state through closed polygons. Here, the dual topology exhibits
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vt =4 ef =6 and fT =3, with force polygons arranged such that each closed loop
corresponds to equilibrium at a node in the form diagram. The critical aspect of this two-
dimensional implementation lies in identifying shared edges between force polygons. In the
force diagram Figure 2(b), the shared edges are defined from polygons 1&3 and 2&3, the
corresponding edges in the form diagram Figure 2(a) are compressive members connecting
node 1&3 and 2&3.

The geometric relationship between form and force diagrams is revealed through the
Minkowski sum construction shown in Figure 2(c). This parametric transformation ¥ = 1 — yt
demonstrates how the form diagram morphs into the force diagram through continuous
geometric operations. At ¥ =0.2 , the diagram shows edges moving toward their
perpendicular orientations. The shaded regions indicate the evolving polygon areas, while the
blue segments highlight edges that will merge in the final force configuration. This two-
dimensional example establishes the fundamental principle that force diagrams naturally
contain redundant edges at polygon boundaries, and these shared edges can be merged to
create self-intersecting configurations.

2.2. Merging operations in two-dimensional force diagrams

Figure 3 illustrates the complete merging process for creating intersecting force diagrams
through a more complex example. First, setting up the initial force polygons (force —a)
representing a compression-only structure, with its corresponding form diagram showing
horizontal structural members. The topological relationship reveals v = fT = 12, e = et = 16,
f = vt = 5. Second, creating another set of triangular force polygons (force — b), which share
boundary edges with the force — a. This triangular element, centered at vertex M, introduces
radial edges that connect to the perimeter vertices. The resulting topology shows reduced
counts (v=ft=9,e=ef =15, f =vT = 7). The corresponding form diagram illustrates
how these new force elements generate arc members that introduce potential tension into the
previously defined boundary condition of the compression-only system.

The merging operation ( force —merged) demonstrates the topological transformation.
Shared edges from two force diagrams are identified and merged, creating an intersecting
force diagram. This operation increases the topological complexity with v = ft = 13, e = et =
24, f =vt =12. The merged force diagram consists of two distinct regions: the outer
trapezoidal zone (faces f;_s), representing compression forces, and the inner triangular zone
(faces f¢_12), representing tension forces. In the resulting form diagram (force — merged),
the structural interpretation becomes clear. The first group of members remains in
compression, while the diagonal members act in tension, creating a combined structural
scheme. The merging process preserves equilibrium at each node while enabling the
coexistence of opposing force types within a single diagram. Notably, the merged
configuration creates both closed internal faces and open external faces in the form diagram,
demonstrating how topological operations on force diagrams directly influence the topology.

2.3. Computational merging operations in PGS

While the two-dimensional examples demonstrate the conceptual foundation of merging
operations, implementing these principles in three-dimensional PGS requires addressing
fundamental differences in topology and geometry. In 3D, shared edges become shared faces,
and force polygons become force polyhedra. This section presents a computational framework



that handles these complexities through three integrated phases: geometric validation,
topological reconstruction, and algebraic approach.
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Figure 4. Computational workflow for generating mixed force structures. Three-phase process: (1)
Force geometry preparation with polyhedral validation and geometric checks, (2) Data structure
construction using winged-edge format and closing matrix computation, and (3) Algebraic constraints
implementation. Decision points ensure geometric validity and constraint satisfaction with feedback
loops for redesign when needed.

The workflow (Figure 4) begins with preparing the force geometry, where polyhedral inputs
are classified as either closed polysurfaces or open surfaces. Critical geometric validation
ensures the viability of merging operations by checking for two specific conditions: the
presence of concave cells and self-intersecting cells within the initial configuration. These
geometric irregularities must be identified early, as they fundamentally affect the subsequent
topological operations. If such conditions are detected, the force geometry requires redesign
before proceeding, ensuring that the input polyhedra meet the basic requirements for
successful merging.

With valid input geometry established, the workflow proceeds to its core operation: the
topological merging of polyhedral cells. First, the Winged-edge Data Structure (WED) is
constructed for the input polyhedra, providing the topological framework necessary for
identifying and manipulating shared geometric elements. For non-merged configurations, the
process directly constructs the closing matrix A for each individual force diagram, maintaining
separate polyhedral cells. However, when merging is required, the algorithm identifies shared
faces between separate force diagrams, the three-dimensional analogue of shared edges in
2D. These shared faces represent locations where polyhedral cells can be topologically fused.
The merging operation then reconstructs a unified closing matrix A that encompasses the
merged configuration, effectively creating a single topological entity from previously separate
polyhedra.

The identification of compatible faces forms the foundation of successful merging operations.
To establish this compatibility, introduce a similarity metric that evaluates geometric
correspondence between candidate interface faces. Let f, € F, and f;, € F,, be candidate
interface faces. Then establish compatibility through the evaluation of three primary geometric
properties: area correspondence, centroid location, and bounding box vertex projection
alignment.

|4ra=4r,] n ||"'fa‘cfb||
)

O'(fa:fb) = +5VP(fa'fb) (1)

dmax
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This equation defines a similarity metric a(f,, f;,) that quantifies how well two faces f,
and f;, from different force polyhedron match each other as potential interface faces
for merging. Lower values of ¢ indicate greater similarity between faces, where Ay,
represents face area, c;, denotes face centroid, d,., is the maximum characteristic
dimension of the system, 6, (f,, f,,) represents the vertex projection alignment metric
that compares the two faces bounding box along the coordinate axes. This could be
defined as:

6 9 = i P s
This vertex projection alignment metric compares the spatial extents of the two faces
along each coordinate axis, where min; and max; represent the minimum and
maximum coordinates, and range; denotes the coordinate range along axis i .
Compatible faces are identified when o(f,, f,) <& , where ¢ is a user-defined
tolerance. Once faces are identified, a consistent indexing system must be established
to ensure topological coherence in the merged structure. This requires a mapping
function ¢:V, UE,UF, U(C, =» V, UE, UF, U (C, that satisfies reciprocal constraints
between form and force diagrams. Once the merging faces are identified, all elements
(vertices, edges, and faces) must be re-indexed to create a coherent unified structure:

{Force -lwypv,eg P e fie fa
Force - 2 Vnt1 7 Umpni1 7 em'fn+1 = fm

(3)

Following face identification, the merging process requires re-indexing to create a
unified topological structure. This re-indexing must preserve the individual identity of
elements while establishing new relationships at the interface. In the vertex re-
indexing phase, vertices from the first force diagram retain their original indices from
0 to n, while vertices from the second diagram receive new indices starting from n +
1. This creates a continuous vertex indexing scheme where v/**" = v, fori € n +
1,..,n+m. This indexing ensures that each vertex in the merged structure has a
unique identifier while preserving the original identifiers of the first diagram. The edge
re-indexing follows a similar approach to maintaining continuity throughout the unified
structure. The face re-indexing requires special handling since two faces (one from
each diagram) will be merged. The re-indexing scheme excludes these faces from the
individual diagrams. Specifically, f**" = f;! for all faces in the first diagram except the
merging face f; , and f"°V = f{"_anrl for all faces in the second diagram except the

merging face f; . This careful exclusion and renumbering ensures that the merged
structure contains exactly the right number of faces without duplication at the interface.
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relationships. Right column: reciprocal form diagrams displaying generated structures with numbered
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The merged topology must satisfy both local and global equilibrium conditions,
expressed through a hierarchy of constraint equations. These constraints ensure that
the merged configuration maintains the fundamental reciprocal relationships of PGS.
The final phase applies algebraic constraints to generate valid reciprocal diagrams
from the merged force configuration. Users can specify edge lengths, vertex locations,
or both, constructing the constraint matrix B and target vector d that define desired
geometric properties. The constrained closing matrix M and vector t incorporate these
specifications into the algebraic formulation. The topological consistency is maintained
through the implementation of linear closing equations. Let C, . .r . denote the

int int

internal edge-face connectivity matrix of the merged force diagram I' . For each
internal face fiJr in the corresponding form diagram I'T | the closure constraint can be
expressed as:

YimCyomi-q; =0 (4)
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Figure 6. Reciprocal relationship between form and force of the merging operation. (a) Vertex
connectivity and labeling schemes for individual and merged re-indexed configurations; (b) edge
indexing shows the integration of 33 + 21 edges into 42 unique edges; (c) face labeling with gray-

shaded interface faces and corresponding structural diagrams showing force flow patterns in the final
hybrid system.
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where n; is the unit normal vector of face f; in the force diagram, and q; represents

the signed length of edge ejT in the form diagram.

The reconnection of edges and vertices at the interface follows a rigorous protocol to
ensure geometric and topological validity. For each identified interface, establish edge
correspondence through normal vector alignment, generating a set of constraint
equations that enforce reciprocity:

! ! T
(Pny)" =0, (Pny,;) =0 (5)

where P; is the [fi,+ X fin:] diagonal matrix that describes the edge-face connectivity
for face fiT , and n,;r , n,,;r are the transformed unit directional vectors in the local

coordinate system of face fi‘L . The complete constrained closing matrix M for the
merged system combines closure constraints, edge constraints, and vertex

constraints:
A
M= (B) (6)
D

where A is the closing matrix, B is the edge constraint matrix, and D is the vertex
constraint matrix.

Through this systematic approach, the computational framework transforms separate
polyhedral force diagrams into unified, self-intersecting configurations. The method
preserves the mathematical rigor of algebraic graphic statics while enabling geometric
operations that were previously infeasible.

Building on the computational framework, the practical implementation of polyhedral
merging is illustrated through a simplified example that demonstrates the
transformation from separate compression and tension systems to a unified structure.
Figure 5 presents the complete merging process in three dimensions. The first input
(1“1*) consists of a rectangular arrangement of four polyhedral cells representing a
compression-only system. Each cell (¢;) maintains consistent inward-facing normals.
The corresponding form diagram (I';) shows a grid-like structural configuration with
purely compressive members. The second input introduces a pyramidal force diagram
(FZ‘L) . These cells, shown in red, represent tensile forces with outward-facing normals.
The form diagram (I,) reveals a tension-dominated structural system where forces
are directed away from the boundary nodes. The merging operation identifies the
shared rectangular face at the top of the pyramidal force as the interface between the
two force diagrams. This face satisfies the compatibility criteria established in the
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computational framework: identical area, coincident centroids, and aligned boundary

vertices. The merged configuration (F,J,rl) creates a self-intersecting force diagram
where the tension pyramid is combined with the compression box, yielding a complex

topology with vT =19, et =42, fT =32, ct =8 . The cells are now classified into
two categories: pure compression ( ¢; & ¢, & c3 ), and compression-tension cells ( cs
& cq & c; ) at the interface. The resulting form diagram ( I3, ) demonstrates how this
topological fusion generates a sophisticated structural system combining horizontal
compression members with diagonal tension members, all meeting at integrated
nodes that balance both force types.

Figure 7. Structural implementation of the pedestrian bridge derived from merged force diagrams,
showing the integration of compression members (white branching network) and tension cables (thin
black lines).

Figure 6 provides a detailed visualization of the merging process through
decomposition of the topological elements. Row (a) shows the vertex labeling and
connectivity, revealing how vertices from both diagrams are preserved and re-indexed

according to the merging protocol. The merged configuration shows vertex v;r as the
apex of the tension pyramid, now embedded within the compression system and re-
indexed as vertex v;ro . Row (b) illustrates edge indexing, where the original 33 edges
from Ff and 21 edges from I‘;r combine and share common edges at the interface,
resulting in 42 unique edges in I‘,‘; . Row (c) presents face labeling, with particular
attention to the intersected faces that facilitate the topological connection. The re-
indexing ensures that faces f,' ,, derive from the compression system, faces f,\ .,
from the tension system, with careful handling of the eliminated duplicate interface
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faces. This three-dimensional example demonstrates that the self-intersecting nature
of the merged force diagram directly translates to structural configurations where
tension and compression elements coexist and interact within the same spatial
volume.

3. Case Study: Tension-Compression Bridge Design

The practical application of merged force diagrams is demonstrated through the
design of a pedestrian bridge that integrates tension and compression elements within
a unified structural system (Figure 7). The bridge design utilizes a branch of
compression members and a series of cables as tension members, which work in
concert to transfer the applied loads to the supports. The force diagram (Figure 8(a))
reveals a complex self-intersecting polyhedral assembly containing 109 cells, 258
faces, 197 edges, and 48 vertices. The global forces after the merged operation are
now represented by two layers of green boundary faces, which represent the external
forces on the bridge, including both applied loads on the deck surface and reaction
forces at the abutments. The rest of the blue and red polyhedral cells encode the
internal force distribution, with their orientations indicating compression and tension
respectively.

(a) force form

(b) y=1-y*

Figure 8. Bridge design case study using merged force diagrams. (a) Force diagram (left) showing
merged polyhedral configuration with 109 cells, and corresponding form diagram (right) revealing
tension-compression combined structure; (b) Minkowski sum transformation demonstrating
parametric evolution from force to form geometry.
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The corresponding form diagram (Figure 8(a)) translates this geometric complexity
into the structural solution. Green vectors indicate the external force system:
downward applied loads distributed across the network and upward reactions at the
supports. The structural response manifests through a network of compression struts
(derived from blue cells in the force diagram) forming the upper chord, while tension
cables create the lower support system. The reciprocal relationship ensures that
member sizes are precisely calibrated to their force magnitudes, with cross-sectional
areas proportional to the corresponding face areas in the force diagram.

algebraic edge constraint - 7,

Figure 9. Design exploration through algebraic edge constraints on the merged force diagram. Matrix
of 16 variations showing manipulation of edge length [, &I, from positive to negative directions, with
algebraic relationships governing structural configurations.
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The Minkowski sum transformation is now also extended in 3D to present the
fundamental reciprocal relationship between the merged force diagram and its
corresponding form diagram. Figure 8(b) illustrates this geometric transformation at
four stages. Aty = 0.2, the self-intersecting polyhedral cells begin to differentiate,
with blue cells rotating toward becoming compression members while red cells orient
to form tension elements. When y = 0.8 , the reciprocal relationship is fully realized:
blue polyhedral cells have transformed into upper compression struts while red cells
manifest as lower cables. The continuous transformation demonstrates that despite
the geometric complexity of self-intersecting polyhedra, the framework maintains
mathematical validity throughout.

3.1. Design exploration through algebraic edge constraints

The versatility of the merged force diagram approach is further demonstrated through
the application of algebraic edge constraints. Figure 9 presents a comprehensive
exploration of the bridge design space, showing how targeted edge length
modifications generate fundamentally different structural configurations while
maintaining equilibrium. The horizontal progression (left to right) shows variations in
edge constraint of [, lengths, while the vertical progression (top to bottom) varies the
edge constraint [; . The signs (+ or -) indicate the edge direction, allowing members
to flip their orientation within the force diagram. Tension members are no longer
restricted to the bottom of the structure. By manipulating edge lengths and directions,
the methodology enables tension elements to occupy any position within the structural
system—above, below, or interwoven with compression members. When edge
constraints flip from positive to negative, the curved edges in the force diagram can
reorient completely, causing members to transition between tension and compression
states while relocating their position in space.

This spatial freedom transforms the design possibilities for mixed force structures. In
configurations where [, assumes negative values, tension cables that traditionally
span beneath the deck can migrate upward, creating overhead suspension systems.
Similarly, when both [, and [, are manipulated, tension members can spiral through
the structure, occupying diagonal and vertical positions that would be impossible in
conventional separated force diagrams. The self-intersecting nature of the merged
force diagram is crucial here, as it allows tension and compression zones to overlap
and interpenetrate, enabling members to pass through different force regions as they
respond to the algebraic constraints. This three-dimensional distribution of opposing
force types creates opportunities for alternative structural designs where the traditional
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hierarchies of compression-above and tension-below are modified, which can adapt
to complex site-specific requirements.
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Figure 10. Physical model at 1:25 scale demonstrating the constructability of structures where 3D-

printed compression members integrate with tension cables.
The 1:25 scale physical model (Figure 10) validates the constructability of structures
derived from merged force diagrams. 3D-printed at 400mm length, the model
demonstrates three critical aspects: first, the multi-member nodes successfully resolve
the complex intersections where up to six compression members converge, confirming
that shared faces in the force diagram translate to viable physical connections.
Second, the tension cables thread through the compression network without
interference, maintaining the clearances necessary for assembly and prestressing.
Third, the integrated system achieves lateral stability through three-dimensional
triangulation; the model stands without external support, resisting lateral loads through
the spatial distribution of members rather than requiring additional bracing. The
fabrication process itself proved straightforward: the compression network was printed
as a single continuous piece, eliminating joint weaknesses, while tension cables were
post-tensioned through predetermined paths.

4. Discussion and conclusion

This paper has presented a methodology for creating self-intersecting polyhedral force
diagrams through topological merging operations, extending the capabilities of PGS
beyond the constraint of non-intersecting cells. The computational framework
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successfully merges separate force polyhedra by identifying compatible faces, re-
indexing topological elements, and reconstructing the algebraic closing matrix to
maintain equilibrium. Future applications extend to vertical structures where merged
force diagrams could revolutionize tower design by enabling tension members to spiral
through compression cores at multiple heights, creating hybrid systems that are
difficult with current methods. The methodology also enables systematic
categorization of tension member integration patterns: perimeter tension with central
compression, alternating horizontal layers, helical tension paths through vertical
compression, or radial tension-compression networks. Research priorities include
developing automated algorithms for identifying optimal merge candidates using
geometric similarity metrics and establishing performance criteria that balance
structural performance with fabrication complexity.
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