LEAVE THIS PAGE BLANK DO NOT DELETE THIS PAGE

KlimaStol: 3D-printed Cooling Chair for Mitigating Outdoor Heat Stress

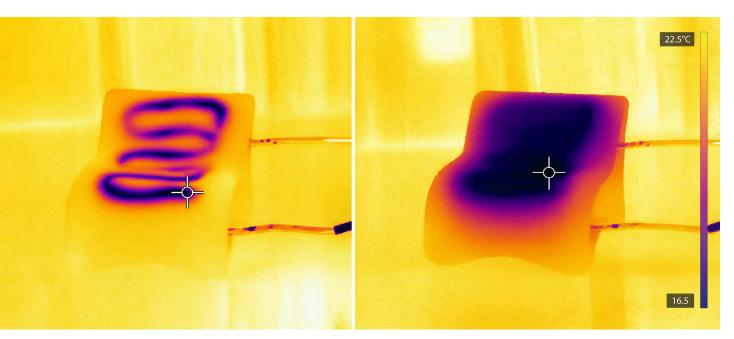
Ji Yoon Bae

University of Pennsylvania

Yefan Zhi

University of Pennsylvania

Eric Teitelbaum


AIL Research

Masoud Akbarzadeh

University of Pennsylvania

Dorit Aviv

University of Pennsylvania

1 Infrared thermal images of KlimaStol show reduced surface temperature resulting from chilled water circulating through the pipe.

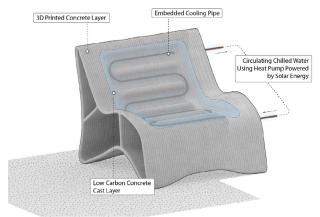
Heatwaves and Outdoor Cooling

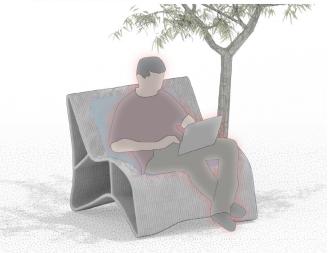
Heatwaves, one of the indicators of climate change, have increased in frequency in the United States—from occurring twice per year in the 1960s to six times annually in the 2010s and 2020s (EPA, 2024). In urban environments, heatwaves drive higher energy demand for cooling, often resulting in power outages. On a broader scale, dependence on energy-intensive cooling systems exacerbates environmental degradation (Ke et al., 2016). This vicious cycle ultimately undermines our capacity to adapt to climate change and, compounded by the lack of adequate alternative cooling strategies during extreme weather events, heightens public health risks (Jones et al., 2018). In response, this project highlights the design and fabrication process of a resilient cooling chair intended to reduce outdoor heat stress during the summer months.

Solar-powered Conductive Cooling Chair

Outdoor cooling shelters serve as critical infrastructure for mitigating heat stress in areas vulnerable to the health risks associated with heatwaves. In a previous prototype, we designed and installed an open-air cooling shelter that operates entirely on solar energy (Figure 2). Specifically, the shelter utilized a conductive cooling bench that enabled individuals to sit and rest while mitigating heat stress (Bae et al, 2025). As shown in Figure 3, the cooling pipes embedded within the bench created a chilled surface, allowing the human body to lose heat conductively upon contact.

2 Wood-based cooling bench from previous cooling shelter project.

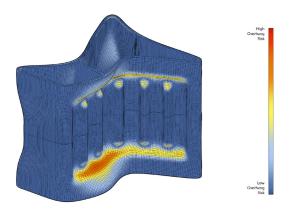


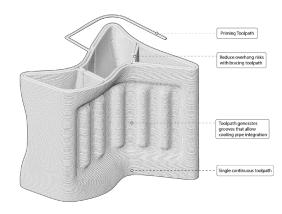

3 IR image of chilled bench surface in previous cooling shelter prototype.

However, due to the nature of conductive cooling—where its effectiveness is determined by the contact surface area with the body and the thermal conductivity of the material—the performance of this bench, made of wood and featuring a conventional form, was limited. Given the limitations of the previous bench, this project features the design exploration, material modification, and fabrication strategies involved in developing an innovative and resilient outdoor cooling chair.

Ergonomic Design and Digital Fabrication

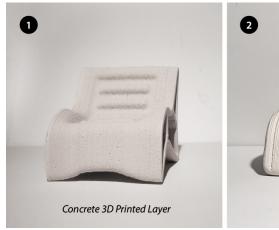
KlimaStol is a concrete cooling chair fabricated through robotic 3D printing. The chair is designed to accommodate a single user, with an organically shaped surface informed by ergonomic principles. This form maximizes the contact area between the body and the chair, thereby promoting effective conductive heat transfer (Figure 4, bottom). Additionally, the material used in this project is a low-carbon, high-thermal conductivity concrete developed in collaboration with material scientists. This material choice was intended to reduce environmental impact while





4 Demonstration of the conductive cooling system (top) and KlimaStol designed to maximize cooling performance (bottom).

enhancing the chair's thermal performance. Conductive cooling is achieved by embedding copper pipes within the seat and backrest, which are specifically designed with channels to accommodate the pipe layout. These pipes are encased in an additional layer of concrete, allowing chilled water-circulated by a heat pump powered by solar energy-to flow through the chair and enable effective heat transfer (Figure 4, top).


To fabricate the complex and functional geometry—such as the pipe channels and the human body-informed surface—we employed concrete 3D printing using a 6-axis robotic arm (Figure 8). Additionally, the complex mesh geometry was optimized to reduce overhang risks during printing (Figure 5). As shown in Figure 6, a continuous loop of toolpaths was designed to improve both structural stability and printability (PSL, 2025). As shown in Figure 7, the cooling pipes were installed along the pre-designed pipe channels in the completed chair, and an additional layer of concrete was cast over them to finish the construction.

5 Mesh geometry optimized to reduce overhang risks

6 Single continuous toolpath for robotic concrete printing.

7 Completed the 3D-printed chair and cooling pipe installation process, including the final concrete casting layer.

Heat Stress Mitigation

As shown in the infrared thermal images taken after the cooling chair was activated, the surface temperature along the cooling pipe dropped immediately (Figure 1). This was followed by a more uniform decrease in temperature across the entire chair surface, facilitated by the high thermal conductivity of concrete. As a robotically 3D-printed concrete cooling chair, KlimaStol demonstrates the potential of integrating sustainable energy sources with energy-efficient cooling methods. Its ability to reduce outdoor heat stress when placed in shaded areas of hot environments positions it as a promising form of resilient outdoor cooling street furniture.

ACKNOWLEDGMENTS

This project was funded by the Ramboll Foundation and by the Kleinman Center for Energy Policy at the University of Pennsylvania. we would like to thank Naomi Wangari, Qinming Hou, Hong Wei, Elliot Haddad, Amir Motavaselian and Max Orobia for their help on this project.

REFERENCES

Bae, Ji Yoon, Kayleigh Houde, Eric Teitelbaum, and Dorit Aviv. "CARBON NEUTRAL SOLAR POWERED OUTDOOR COOLING SHELTER." In the Annual Modeling and Simulation Conference (ANNSIM). Madrid, Spain: IEEE, 2025.

EPA. "Climate Change Indicators: Heat Waves," 2024.

Jones, Bryan, Claudia Tebaldi, Brian C O'Neill, Keith Oleson, and Jing Gao. "Avoiding Population Exposure to Heat-Related Extremes: Demographic Change vs Climate Change." Climatic Change 146 (2018): 423-37.

Ke, Xinda, Di Wu, Jennie Rice, Michael Kintner-Meyer, and Ning Lu. "Quantifying Impacts of Heat Waves on Power Grid Operation." Applied Energy 183 (2016): 504-12.

Polyhedral Structures Laboratory. Ovenbird. V. 1.0.6. Department of Architecture, School of Design, University of Pennsylvania. Windows/Mac. 2025.

IMAGE CREDITS

Figure 1-8: ©Thermal Architecture Lab

8 Robotic concrete 3D printing process of a geometric toolpath designed as a continuous loop to enhance printability.

Ji Yoon Bae is a PhD candidate at the Weitzman School of Design, University of Pennsylvania. Hisresearch on Homeostatic Architecture integrates architectural design with biology, material science, andthermodynamics. He explores biologically informed building systems that create a feedback loop betweenhumans, buildings, and their surrounding environment, promoting biological and ecological homeostasis

Yefan Zhi is a Ph.D. student in Architecture at theUniversity of Pennsylvania. His research optimizes the energyand material efficiency of architectural structures from adesign-for-manufacturing perspective. His work extensively exploits computational geometry and graph algorithms for auto-mating fabrication rationalization and enabling fabrication-orienteddesign

Eric Teitelbaum PhD completed a dual degree Ph.D. in 2020 from Princeton University in Architec-ture and Material Science, researching how materials enable energy-saving thermal comfort regimes beyondstandard air-based methods. He is a Senior Engineer at AIL Research Inc. in Hopewell, NJ, a small R&Dfirm

developing, prototyping and evaluating cutting edge thermal technologies. He has recently been fo-cusing on membrane assisted radiant cooling for outdoor thermal comfort and heat stress relief.

Masoud Akbarzadeh is an Associate Professor of Architecturein Structures and Advanced Technologies and the Director of the Polyhedral Structures Laboratory (PSL) at the University of Pennsylvania. His research focuses on Three-Dimensional Graphic Statics, an innovative geometric approach to structural design in three dimensions. In 2020, he was awarded the National Science Foundation (NSF) CAREER Award to further develop 3D/Polyhedral Graphic Statics methods for education, design, and the optimization of high-performance structures

Dorit Aviv PhD, AIA is an Assistant Professor of Architecture at the Weitzman School of Design, specializing in environmental performance. She is the director of the Thermal Architecture Lab, a cross-disciplinary laboratory at the intersection of thermodynamics, architecture, and material science. Her workexamines synergies between renewable environmental forces and architectural materials and forms.